-
1
-
-
0034201611
-
Adaptive method of realizing natural gradient learning for multilayer perceptrons
-
S.-i. Amari, H. Park, and K. Fukumizu. Adaptive method of realizing natural gradient learning for multilayer perceptrons. Neural Computation, 12(6):1399-1409, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.6
, pp. 1399-1409
-
-
Amari, S.-I.1
Park, H.2
Fukumizu, K.3
-
3
-
-
34250297122
-
An assessment of two approaches to variable metric methods
-
K. W. Brodlie. An assessment of two approaches to variable metric methods. Mathematical Programming, 12:344-355, 1977.
-
(1977)
Mathematical Programming
, vol.12
, pp. 344-355
-
-
Brodlie, K.W.1
-
4
-
-
16244414494
-
Introduction to the bio-entity recognition task at JNLPBA
-
Geneva, Switzerland
-
J.-D. Kim, T. Ohta, Y. Tsuruoka, Y. Tateisi, and N. Collier. Introduction to the bio-entity recognition task at JNLPBA. In Proc. Intl. Joint Workshop on Natural Language Processing in Biomedicine and its Applications (NLPBA), pages 70-75, Geneva, Switzerland, 2004.
-
(2004)
Proc. Intl. Joint Workshop on Natural Language Processing in Biomedicine and Its Applications (NLPBA)
, pp. 70-75
-
-
Kim, J.-D.1
Ohta, T.2
Tsuruoka, Y.3
Tateisi, Y.4
Collier, N.5
-
5
-
-
84898983746
-
Discriminative fields for modeling spatial dependencies in natural images
-
S. Thrun, L. Saul, and B. Schölkopf, editors
-
S. Kumar and M. Hebert. Discriminative fields for modeling spatial dependencies in natural images. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
-
-
Kumar, S.1
Hebert, M.2
-
6
-
-
0142192295
-
Conditional random fields: Probabilistic modeling for segmenting and labeling sequence data
-
San Francisco, CA. Morgan Kaufmann
-
J. D. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic modeling for segmenting and labeling sequence data. In Proc. Intl. Conf. Machine Learning, volume 18, pages 282-289, San Francisco, CA, 2001. Morgan Kaufmann.
-
(2001)
Proc. Intl. Conf. Machine Learning
, vol.18
, pp. 282-289
-
-
Lafferty, J.D.1
McCallum, A.2
Pereira, F.3
-
7
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
M. F. Møller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6(4):525-533, 1993.
-
(1993)
Neural Networks
, vol.6
, Issue.4
, pp. 525-533
-
-
Møller, M.F.1
-
8
-
-
0009589301
-
How to train neural networks
-
G. B. Orr and K.-R. Müller, editors, volume 1524 of Lecture Notes in Computer Science, chapter 17. Springer Verlag, Berlin
-
R. Neuneier and H. G. Zimmermann. How to train neural networks. In G. B. Orr and K.-R. Müller, editors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in Computer Science, chapter 17, pages 373-423.Springer Verlag, Berlin, 1998.
-
(1998)
Neural Networks: Tricks of the Trade
, pp. 373-423
-
-
Neuneier, R.1
Zimmermann, H.G.2
-
10
-
-
0026408191
-
Decoupled extended Kalman filter training of feedforward layered networks
-
Seattle, WA. IEEE
-
G. V. Puskorius and L. A. Feldkamp. Decoupled extended Kalman filter training of feedforward layered networks. In Proc. Intl. Joint Conf. on Neural Networks, volume I, pages 771-777, Seattle, WA, 1991. IEEE.
-
(1991)
Proc. Intl. Joint Conf. on Neural Networks
, vol.1
, pp. 771-777
-
-
Puskorius, G.V.1
Feldkamp, L.A.2
-
12
-
-
0002686402
-
A convergence theorem for non negative almost supermartingales and some applications
-
Ohio State Univ., Columbus, Ohio. Academic Press, New York
-
H. E. Robbins and D. O. Siegmund. A convergence theorem for non negative almost supermartingales and some applications. In Proc. Sympos. Optimizing Methods in Statistics, pages 233-257, Ohio State Univ., Columbus, Ohio, 1971. Academic Press, New York.
-
(1971)
Proc. Sympos. Optimizing Methods in Statistics
, pp. 233-257
-
-
Robbins, H.E.1
Siegmund, D.O.2
-
14
-
-
0036631778
-
Fast curvature matrix-vector products for second-order gradient descent
-
N. N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural Computation, 14(7):1723-1738, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.7
, pp. 1723-1738
-
-
Schraudolph, N.N.1
-
15
-
-
0033338205
-
Local gain adaptation in stochastic gradient descent
-
Edinburgh, Scotland. IEE, London
-
N. N. Schraudolph. Local gain adaptation in stochastic gradient descent. In Proc. Intl. Conf. Artificial Neural Networks, pages 569-574, Edinburgh, Scotland, 1999. IEE, London.
-
(1999)
Proc. Intl. Conf. Artificial Neural Networks
, pp. 569-574
-
-
Schraudolph, N.N.1
-
16
-
-
33749265409
-
Combining conjugate direction methods with stochastic approximation of gradients
-
C. M. Bishop and B. J. Frey, editors, Key West. ISBN 0-9727358-0-1
-
N. N. Schraudolph and T. Graepel. Combining conjugate direction methods with stochastic approximation of gradients. In C. M. Bishop and B. J. Frey, editors, Proc. 9th Intl. Workshop Artificial Intelligence and Statistics, pages 7-13, Key West, 2003. ISBN 0-9727358-0-1.
-
(2003)
Proc. 9th Intl. Workshop Artificial Intelligence and Statistics
, pp. 7-13
-
-
Schraudolph, N.N.1
Graepel, T.2
-
17
-
-
85043116988
-
Shallow parsing with conditional random fields
-
Edmonton, Canada. Association for Computational Linguistics
-
F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceedings of HLT-NAACL, pages 213-220, Edmonton, Canada, 2003. Association for Computational Linguistics.
-
(2003)
Proceedings of HLT-NAACL
, pp. 213-220
-
-
Sha, F.1
Pereira, F.2
-
18
-
-
33749243756
-
Accelerated training conditional random fields with stochastic gradient methods
-
New York, NY, USA. ACM Press. ISBN 1-59593-383-2
-
S. V. N. Vishwanathan, N. N. Schraudolph, M. Schmidt, and K. Murphy. Accelerated training conditional random fields with stochastic gradient methods. In Proc. Intl. Conf. Machine Learning, pages 969-976, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-383-2.
-
(2006)
Proc. Intl. Conf. Machine Learning
, pp. 969-976
-
-
Vishwanathan, S.V.N.1
Schraudolph, N.N.2
Schmidt, M.3
Murphy, K.4
|