메뉴 건너뛰기




Volumn 2, Issue , 2007, Pages 436-443

A stochastic quasi-Newton method for online convex optimization

Author keywords

[No Author keywords available]

Indexed keywords

CONDITIONAL RANDOM FIELD; CONVEX FUNCTIONS; HIGH-DIMENSIONAL PROBLEMS; NATURAL GRADIENT; NATURAL LANGUAGE PROCESSING; NONCONVEX OPTIMIZATION PROBLEM; ONLINE OPTIMIZATION; QUASI-NEWTON METHODS; QUASI-NEWTON OPTIMIZATION METHOD; STOCHASTIC GRADIENT METHODS;

EID: 84862300219     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (276)

References (18)
  • 1
    • 0034201611 scopus 로고    scopus 로고
    • Adaptive method of realizing natural gradient learning for multilayer perceptrons
    • S.-i. Amari, H. Park, and K. Fukumizu. Adaptive method of realizing natural gradient learning for multilayer perceptrons. Neural Computation, 12(6):1399-1409, 2000.
    • (2000) Neural Computation , vol.12 , Issue.6 , pp. 1399-1409
    • Amari, S.-I.1    Park, H.2    Fukumizu, K.3
  • 3
    • 34250297122 scopus 로고
    • An assessment of two approaches to variable metric methods
    • K. W. Brodlie. An assessment of two approaches to variable metric methods. Mathematical Programming, 12:344-355, 1977.
    • (1977) Mathematical Programming , vol.12 , pp. 344-355
    • Brodlie, K.W.1
  • 5
    • 84898983746 scopus 로고    scopus 로고
    • Discriminative fields for modeling spatial dependencies in natural images
    • S. Thrun, L. Saul, and B. Schölkopf, editors
    • S. Kumar and M. Hebert. Discriminative fields for modeling spatial dependencies in natural images. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, 2004.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Kumar, S.1    Hebert, M.2
  • 6
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic modeling for segmenting and labeling sequence data
    • San Francisco, CA. Morgan Kaufmann
    • J. D. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic modeling for segmenting and labeling sequence data. In Proc. Intl. Conf. Machine Learning, volume 18, pages 282-289, San Francisco, CA, 2001. Morgan Kaufmann.
    • (2001) Proc. Intl. Conf. Machine Learning , vol.18 , pp. 282-289
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.3
  • 7
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • M. F. Møller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6(4):525-533, 1993.
    • (1993) Neural Networks , vol.6 , Issue.4 , pp. 525-533
    • Møller, M.F.1
  • 8
    • 0009589301 scopus 로고    scopus 로고
    • How to train neural networks
    • G. B. Orr and K.-R. Müller, editors, volume 1524 of Lecture Notes in Computer Science, chapter 17. Springer Verlag, Berlin
    • R. Neuneier and H. G. Zimmermann. How to train neural networks. In G. B. Orr and K.-R. Müller, editors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in Computer Science, chapter 17, pages 373-423.Springer Verlag, Berlin, 1998.
    • (1998) Neural Networks: Tricks of the Trade , pp. 373-423
    • Neuneier, R.1    Zimmermann, H.G.2
  • 10
    • 0026408191 scopus 로고
    • Decoupled extended Kalman filter training of feedforward layered networks
    • Seattle, WA. IEEE
    • G. V. Puskorius and L. A. Feldkamp. Decoupled extended Kalman filter training of feedforward layered networks. In Proc. Intl. Joint Conf. on Neural Networks, volume I, pages 771-777, Seattle, WA, 1991. IEEE.
    • (1991) Proc. Intl. Joint Conf. on Neural Networks , vol.1 , pp. 771-777
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 12
    • 0002686402 scopus 로고
    • A convergence theorem for non negative almost supermartingales and some applications
    • Ohio State Univ., Columbus, Ohio. Academic Press, New York
    • H. E. Robbins and D. O. Siegmund. A convergence theorem for non negative almost supermartingales and some applications. In Proc. Sympos. Optimizing Methods in Statistics, pages 233-257, Ohio State Univ., Columbus, Ohio, 1971. Academic Press, New York.
    • (1971) Proc. Sympos. Optimizing Methods in Statistics , pp. 233-257
    • Robbins, H.E.1    Siegmund, D.O.2
  • 14
    • 0036631778 scopus 로고    scopus 로고
    • Fast curvature matrix-vector products for second-order gradient descent
    • N. N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural Computation, 14(7):1723-1738, 2002.
    • (2002) Neural Computation , vol.14 , Issue.7 , pp. 1723-1738
    • Schraudolph, N.N.1
  • 15
    • 0033338205 scopus 로고    scopus 로고
    • Local gain adaptation in stochastic gradient descent
    • Edinburgh, Scotland. IEE, London
    • N. N. Schraudolph. Local gain adaptation in stochastic gradient descent. In Proc. Intl. Conf. Artificial Neural Networks, pages 569-574, Edinburgh, Scotland, 1999. IEE, London.
    • (1999) Proc. Intl. Conf. Artificial Neural Networks , pp. 569-574
    • Schraudolph, N.N.1
  • 16
    • 33749265409 scopus 로고    scopus 로고
    • Combining conjugate direction methods with stochastic approximation of gradients
    • C. M. Bishop and B. J. Frey, editors, Key West. ISBN 0-9727358-0-1
    • N. N. Schraudolph and T. Graepel. Combining conjugate direction methods with stochastic approximation of gradients. In C. M. Bishop and B. J. Frey, editors, Proc. 9th Intl. Workshop Artificial Intelligence and Statistics, pages 7-13, Key West, 2003. ISBN 0-9727358-0-1.
    • (2003) Proc. 9th Intl. Workshop Artificial Intelligence and Statistics , pp. 7-13
    • Schraudolph, N.N.1    Graepel, T.2
  • 17
    • 85043116988 scopus 로고    scopus 로고
    • Shallow parsing with conditional random fields
    • Edmonton, Canada. Association for Computational Linguistics
    • F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceedings of HLT-NAACL, pages 213-220, Edmonton, Canada, 2003. Association for Computational Linguistics.
    • (2003) Proceedings of HLT-NAACL , pp. 213-220
    • Sha, F.1    Pereira, F.2
  • 18
    • 33749243756 scopus 로고    scopus 로고
    • Accelerated training conditional random fields with stochastic gradient methods
    • New York, NY, USA. ACM Press. ISBN 1-59593-383-2
    • S. V. N. Vishwanathan, N. N. Schraudolph, M. Schmidt, and K. Murphy. Accelerated training conditional random fields with stochastic gradient methods. In Proc. Intl. Conf. Machine Learning, pages 969-976, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-383-2.
    • (2006) Proc. Intl. Conf. Machine Learning , pp. 969-976
    • Vishwanathan, S.V.N.1    Schraudolph, N.N.2    Schmidt, M.3    Murphy, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.