메뉴 건너뛰기




Volumn 35, Issue 10, 2017, Pages 925-936

Biotechnological Perspectives of Pyrolysis Oil for a Bio-Based Economy

Author keywords

bioeconomy; biomass; industrial biotechnology; lignocellulose; pyrolysis oil; tolerance engineering

Indexed keywords

BIOMASS; BIOTECHNOLOGY; CARBON; CELLULOSE; ENZYMATIC HYDROLYSIS; FEEDSTOCKS; LIGNIN; PYROLYSIS;

EID: 85021822249     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2017.06.003     Document Type: Review
Times cited : (42)

References (79)
  • 1
    • 0032763449 scopus 로고    scopus 로고
    • An overview of fast pyrolysis of biomass
    • Bridgwater, A.V., et al. An overview of fast pyrolysis of biomass. Org. Geochem. 30 (1999), 1479–1493.
    • (1999) Org. Geochem. , vol.30 , pp. 1479-1493
    • Bridgwater, A.V.1
  • 2
    • 0033164796 scopus 로고    scopus 로고
    • Fuel oil quality of biomass pyrolysis oils – state of the art for the end users
    • Oasmaa, A., Czernik, S., Fuel oil quality of biomass pyrolysis oils – state of the art for the end users. Energy Fuels 13 (1999), 914–921.
    • (1999) Energy Fuels , vol.13 , pp. 914-921
    • Oasmaa, A.1    Czernik, S.2
  • 3
    • 0024170399 scopus 로고
    • Composition of oils obtained by fast pyrolysis of different woods
    • American Chemical Society
    • Piskorz, J., et al. Composition of oils obtained by fast pyrolysis of different woods. Pyrolysis Oils from Biomass (ACS Symposium Series), 1988, American Chemical Society, 167–178.
    • (1988) Pyrolysis Oils from Biomass (ACS Symposium Series) , pp. 167-178
    • Piskorz, J.1
  • 4
    • 0031802472 scopus 로고    scopus 로고
    • Characterization of biomass-based flash pyrolysis oils
    • Sipilä, K., et al. Characterization of biomass-based flash pyrolysis oils. Biomass Bioenergy 14 (1998), 103–113.
    • (1998) Biomass Bioenergy , vol.14 , pp. 103-113
    • Sipilä, K.1
  • 5
    • 80052643929 scopus 로고    scopus 로고
    • Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil
    • Jarboe, L.R., et al. Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil. Appl. Microbiol. Biotechnol. 91 (2011), 1519–1523.
    • (2011) Appl. Microbiol. Biotechnol. , vol.91 , pp. 1519-1523
    • Jarboe, L.R.1
  • 6
    • 79955365547 scopus 로고    scopus 로고
    • Fractional condensation of biomass pyrolysis vapors
    • Westerhof, R.J.M., et al. Fractional condensation of biomass pyrolysis vapors. Energy Fuels 25 (2011), 1817–1829.
    • (2011) Energy Fuels , vol.25 , pp. 1817-1829
    • Westerhof, R.J.M.1
  • 7
    • 84928103199 scopus 로고    scopus 로고
    • Application of pyrolysis oil in the OP16 gas turbine – development of a low calorific fuel combustor
    • Beran, M., Axelsson, L.-U., Application of pyrolysis oil in the OP16 gas turbine – development of a low calorific fuel combustor. PyNe Newslett. 35 (2014), 16–17.
    • (2014) PyNe Newslett. , vol.35 , pp. 16-17
    • Beran, M.1    Axelsson, L.-U.2
  • 9
    • 84949233118 scopus 로고    scopus 로고
    • Pyrolysis oil combustion tests in an industrial boiler
    • A.V. Bridgwater Wiley-Blackwell
    • Oasmaa, A., et al. Pyrolysis oil combustion tests in an industrial boiler. Bridgwater, A.V., (eds.) Progress in Thermochemical Biomass Conversion, 2001, Wiley-Blackwell, 1468–1481.
    • (2001) Progress in Thermochemical Biomass Conversion , pp. 1468-1481
    • Oasmaa, A.1
  • 10
    • 84922366753 scopus 로고    scopus 로고
    • Overview of upgrading of pyrolysis oil of biomass
    • Yang, H., et al. Overview of upgrading of pyrolysis oil of biomass. Energy Procedia 61 (2014), 1306–1309.
    • (2014) Energy Procedia , vol.61 , pp. 1306-1309
    • Yang, H.1
  • 11
    • 85031304422 scopus 로고    scopus 로고
    • Characterization and application of manure-based bio-binder in asphalt industry
    • Transportation Research Board
    • Fini, E., et al. Characterization and application of manure-based bio-binder in asphalt industry. TRB 89th Annual Meeting Compendium of Papers, 2001, Transportation Research Board.
    • (2001) TRB 89th Annual Meeting Compendium of Papers
    • Fini, E.1
  • 12
    • 77950485769 scopus 로고    scopus 로고
    • Use of lignin separated from bio-oil in oriented strand board binder phenol-formaldehyde resins
    • Sukhbaatar, B., et al. Use of lignin separated from bio-oil in oriented strand board binder phenol-formaldehyde resins. BioResources 4 (2009), 789–804.
    • (2009) BioResources , vol.4 , pp. 789-804
    • Sukhbaatar, B.1
  • 13
    • 85031289233 scopus 로고    scopus 로고
    • Method of producing slow-release nitrogenous organic fertilizer from biomass, US 5676727.
    • Radlein, D. St. A.G. et al. Method of producing slow-release nitrogenous organic fertilizer from biomass, 1997, US 5676727.
    • (1997)
    • Radlein, D.1    St, A.G.2
  • 14
    • 85031282213 scopus 로고
    • Ensyn Engineering Associates Inc. Method of using fast pyrolysis liquids as liquid smoke, US 4876108.
    • Underwood, G. and Graham, R.G. Ensyn Engineering Associates Inc. Method of using fast pyrolysis liquids as liquid smoke, 1991, US 4876108.
    • (1991)
    • Underwood, G.1    Graham, R.G.2
  • 15
    • 4344636071 scopus 로고    scopus 로고
    • Preparing levoglucosan derived from waste material by pyrolysis
    • Li, L.I.N., Zhang, H., Preparing levoglucosan derived from waste material by pyrolysis. Energy Sources 26 (2004), 1053–1059.
    • (2004) Energy Sources , vol.26 , pp. 1053-1059
    • Li, L.I.N.1    Zhang, H.2
  • 16
    • 84901684802 scopus 로고    scopus 로고
    • Bio-oil upgrading strategies to improve PHA production from selected aerobic mixed cultures
    • Moita Fidalgo, R., et al. Bio-oil upgrading strategies to improve PHA production from selected aerobic mixed cultures. N. Biotechnol. 31 (2014), 297–307.
    • (2014) N. Biotechnol. , vol.31 , pp. 297-307
    • Moita Fidalgo, R.1
  • 17
    • 77956175648 scopus 로고    scopus 로고
    • Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids
    • Lian, J., et al. Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. Bioresour. Technol. 101 (2010), 9688–9699.
    • (2010) Bioresour. Technol. , vol.101 , pp. 9688-9699
    • Lian, J.1
  • 18
    • 79960840151 scopus 로고    scopus 로고
    • Engineering ethanologenic Escherichia coli for levoglucosan utilization
    • Layton, D.S., et al. Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresour. Technol. 102 (2011), 8318–8322.
    • (2011) Bioresour. Technol. , vol.102 , pp. 8318-8322
    • Layton, D.S.1
  • 19
    • 84945439579 scopus 로고    scopus 로고
    • Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels
    • Islam, Z.U., et al. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels. J. Ind. Microbiol. Biotechnol. 42 (2015), 1557–1579.
    • (2015) J. Ind. Microbiol. Biotechnol. , vol.42 , pp. 1557-1579
    • Islam, Z.U.1
  • 20
    • 25644442574 scopus 로고    scopus 로고
    • Screening and identification of the levoglucosan kinase gene (lgk) from Aspergillus niger by LC-ESI-MS/MS and RT-PCR
    • Xie, H.J., et al. Screening and identification of the levoglucosan kinase gene (lgk) from Aspergillus niger by LC-ESI-MS/MS and RT-PCR. FEMS Microbiol. Lett. 251 (2005), 313–319.
    • (2005) FEMS Microbiol. Lett. , vol.251 , pp. 313-319
    • Xie, H.J.1
  • 21
    • 71349084996 scopus 로고    scopus 로고
    • Cloning of a novel levoglucosan kinase gene from Lipomyces starkeyi and its expression in Escherichia coli
    • Dai, J., et al. Cloning of a novel levoglucosan kinase gene from Lipomyces starkeyi and its expression in Escherichia coli. World J. Microbiol. Biotechnol. 25 (2009), 1589–1595.
    • (2009) World J. Microbiol. Biotechnol. , vol.25 , pp. 1589-1595
    • Dai, J.1
  • 22
    • 84957072787 scopus 로고    scopus 로고
    • Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440
    • Linger, J.G., et al. Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440. Metab. Eng. Commun. 3 (2016), 24–29.
    • (2016) Metab. Eng. Commun. , vol.3 , pp. 24-29
    • Linger, J.G.1
  • 23
    • 84947717039 scopus 로고    scopus 로고
    • Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate
    • Kim, E.M., et al. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate. FEMS Microbiol. Lett., 362, 2015, fnv161.
    • (2015) FEMS Microbiol. Lett. , vol.362 , pp. fnv161
    • Kim, E.M.1
  • 24
    • 26944440137 scopus 로고    scopus 로고
    • Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications
    • 25–25
    • Warnecke, T., Gill, R.T., Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb. Cell Fact., 4, 2005 25–25.
    • (2005) Microb. Cell Fact. , vol.4
    • Warnecke, T.1    Gill, R.T.2
  • 25
    • 0000581636 scopus 로고
    • Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle
    • Kornberg, H.L., Krebs, H.A., Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 179 (1957), 988–991.
    • (1957) Nature , vol.179 , pp. 988-991
    • Kornberg, H.L.1    Krebs, H.A.2
  • 26
    • 0036061941 scopus 로고    scopus 로고
    • Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity
    • Roe, A.J., et al. Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148 (2002), 2215–2222.
    • (2002) Microbiology , vol.148 , pp. 2215-2222
    • Roe, A.J.1
  • 27
    • 84874571853 scopus 로고    scopus 로고
    • Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP)
    • Chong, H., et al. Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS One, 8, 2013, e77422.
    • (2013) PLoS One , vol.8 , pp. e77422
    • Chong, H.1
  • 28
    • 85016808162 scopus 로고    scopus 로고
    • Production of succinate from acetate by metabolically engineered Escherichia coli
    • Li, Y., et al. Production of succinate from acetate by metabolically engineered Escherichia coli. ACS Synth. Biol. 5 (2016), 1299–1307.
    • (2016) ACS Synth. Biol. , vol.5 , pp. 1299-1307
    • Li, Y.1
  • 29
    • 84880887096 scopus 로고    scopus 로고
    • Metabolic engineering of Bacillus subtilis for growth on overflow metabolites
    • 72–72
    • Kabisch, J., et al. Metabolic engineering of Bacillus subtilis for growth on overflow metabolites. Microb. Cell Fact., 12, 2013 72–72.
    • (2013) Microb. Cell Fact. , vol.12
    • Kabisch, J.1
  • 30
    • 84937637609 scopus 로고    scopus 로고
    • Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance
    • Lee, Y., et al. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance. Appl. Microbiol. Biotechnol. 99 (2015), 6391–6403.
    • (2015) Appl. Microbiol. Biotechnol. , vol.99 , pp. 6391-6403
    • Lee, Y.1
  • 31
    • 84954025882 scopus 로고    scopus 로고
    • Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae
    • Meijnen, J.-P., et al. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae. Biotechnol. Biofuels, 9, 2016, 5.
    • (2016) Biotechnol. Biofuels , vol.9 , pp. 5
    • Meijnen, J.-P.1
  • 32
    • 84987981814 scopus 로고    scopus 로고
    • A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations
    • González-Ramos, D., et al. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol. Biofuels, 9, 2016, 173.
    • (2016) Biotechnol. Biofuels , vol.9 , pp. 173
    • González-Ramos, D.1
  • 33
    • 85011347801 scopus 로고    scopus 로고
    • Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms
    • Swinnen, S., et al. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms. Microb. Cell Fact., 16, 2017, 7.
    • (2017) Microb. Cell Fact. , vol.16 , pp. 7
    • Swinnen, S.1
  • 34
    • 84868139340 scopus 로고    scopus 로고
    • Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis
    • Haitani, Y., et al. Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis. J. Biosci. Bioeng. 114 (2012), 648–651.
    • (2012) J. Biosci. Bioeng. , vol.114 , pp. 648-651
    • Haitani, Y.1
  • 35
    • 77956981479 scopus 로고
    • The metabolism of glucose and acetate in Aspergillus niger
    • Halliwell, G., Walker, T.K., The metabolism of glucose and acetate in Aspergillus niger. J. Exp. Bot. 3 (1952), 155–161.
    • (1952) J. Exp. Bot. , vol.3 , pp. 155-161
    • Halliwell, G.1    Walker, T.K.2
  • 36
    • 0031825202 scopus 로고    scopus 로고
    • Isolation of mutants deficient in acetyl-CoA synthetase and a possible regulator of acetate induction in Aspergillus niger
    • Sealy-Lewis, H.M., Fairhurst, V., Isolation of mutants deficient in acetyl-CoA synthetase and a possible regulator of acetate induction in Aspergillus niger. Microbiology 144 (1998), 1895–1900.
    • (1998) Microbiology , vol.144 , pp. 1895-1900
    • Sealy-Lewis, H.M.1    Fairhurst, V.2
  • 37
    • 84979503665 scopus 로고    scopus 로고
    • Formate assimilation: the metabolic architecture of natural and synthetic pathways
    • Bar-Even, A., Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry 55 (2016), 3851–3863.
    • (2016) Biochemistry , vol.55 , pp. 3851-3863
    • Bar-Even, A.1
  • 38
    • 85031307542 scopus 로고    scopus 로고
    • Bio-oil treated by cultivation of Saccharomyces cerevisiae (QH01)
    • Dang, D., et al. Bio-oil treated by cultivation of Saccharomyces cerevisiae (QH01). BioResources 9 (2014), 2727–2738.
    • (2014) BioResources , vol.9 , pp. 2727-2738
    • Dang, D.1
  • 39
    • 67349241398 scopus 로고    scopus 로고
    • C1 compounds as auxiliary substrate for engineered Pseudomonas putida S12
    • Koopman, F.W., et al. C1 compounds as auxiliary substrate for engineered Pseudomonas putida S12. Appl. Microbiol. Biotechnol. 83 (2009), 705–713.
    • (2009) Appl. Microbiol. Biotechnol. , vol.83 , pp. 705-713
    • Koopman, F.W.1
  • 40
    • 84922433192 scopus 로고    scopus 로고
    • Engineering Escherichia coli for methanol conversion
    • Müller, J.E.N., et al. Engineering Escherichia coli for methanol conversion. Meta Eng. 28 (2015), 190–201.
    • (2015) Meta Eng. , vol.28 , pp. 190-201
    • Müller, J.E.N.1
  • 41
    • 84924706148 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for methanol metabolism
    • Witthoff, S., et al. Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl. Environ. Microbiol. 81 (2015), 2215–2225.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 2215-2225
    • Witthoff, S.1
  • 42
    • 84944387486 scopus 로고    scopus 로고
    • Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum
    • Lessmeier, L., Wendisch, V.F., Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum. BMC Microbiol., 15, 2015, 216.
    • (2015) BMC Microbiol. , vol.15 , pp. 216
    • Lessmeier, L.1    Wendisch, V.F.2
  • 43
    • 77955661468 scopus 로고    scopus 로고
    • Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds
    • Kim, S.-J., et al. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresour. Technol. 101 (2010), 9294–9300.
    • (2010) Bioresour. Technol. , vol.101 , pp. 9294-9300
    • Kim, S.-J.1
  • 44
    • 74149088091 scopus 로고    scopus 로고
    • Conversion of phenol to glutamate and proline in Corynebacterium glutamicum is regulated by transcriptional regulator ArgR
    • Lee, S.Y., et al. Conversion of phenol to glutamate and proline in Corynebacterium glutamicum is regulated by transcriptional regulator ArgR. Appl. Microbiol. Biotechnol. 85 (2010), 713–720.
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 713-720
    • Lee, S.Y.1
  • 45
    • 84922063940 scopus 로고    scopus 로고
    • Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species
    • Hasan, S.A., Jabeen, S., Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species. Biotechnol. Biotechnol. Equip. 29 (2015), 45–53.
    • (2015) Biotechnol. Biotechnol. Equip. , vol.29 , pp. 45-53
    • Hasan, S.A.1    Jabeen, S.2
  • 46
    • 84955684217 scopus 로고    scopus 로고
    • Evaluation of the phenol biodegradation by Aspergillus niger. application of full factorial design methodology
    • Tebbouche, L., et al. Evaluation of the phenol biodegradation by Aspergillus niger. application of full factorial design methodology. Desalin. Water Treat. 57 (2016), 6124–6130.
    • (2016) Desalin. Water Treat. , vol.57 , pp. 6124-6130
    • Tebbouche, L.1
  • 47
    • 0035289692 scopus 로고    scopus 로고
    • Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase
    • Larsson, S., et al. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl. Environ. Microbiol. 67 (2001), 1163–1170.
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 1163-1170
    • Larsson, S.1
  • 48
    • 82455167815 scopus 로고    scopus 로고
    • Microbial degradation of furanic compounds: biochemistry, genetics, and impact
    • Wierckx, N., et al. Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl. Microbiol. Biotechnol. 92 (2011), 1095–1105.
    • (2011) Appl. Microbiol. Biotechnol. , vol.92 , pp. 1095-1105
    • Wierckx, N.1
  • 49
    • 84958162685 scopus 로고    scopus 로고
    • Isolation and characterization of bacteria that use furans as the sole carbon source
    • Lee, S.A., et al. Isolation and characterization of bacteria that use furans as the sole carbon source. Appl. Biochem. Biotechnol. 178 (2016), 76–90.
    • (2016) Appl. Biochem. Biotechnol. , vol.178 , pp. 76-90
    • Lee, S.A.1
  • 50
    • 84936950099 scopus 로고    scopus 로고
    • Biodegradation of furfural by Bacillus subtilis strain DS3
    • Zheng, D., et al. Biodegradation of furfural by Bacillus subtilis strain DS3. J. Environ. Biol. 36 (2015), 727–732.
    • (2015) J. Environ. Biol. , vol.36 , pp. 727-732
    • Zheng, D.1
  • 51
    • 84920250543 scopus 로고    scopus 로고
    • Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions
    • Tsuge, Y., et al. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions. Appl. Microbiol. Biotechnol. 98 (2014), 8675–8683.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 8675-8683
    • Tsuge, Y.1
  • 52
    • 84877843758 scopus 로고    scopus 로고
    • Bio-oil based biorefinery strategy for the production of succinic acid
    • Wang, C., et al. Bio-oil based biorefinery strategy for the production of succinic acid. Biotechnol. Biofuels, 6, 2013, 74.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 74
    • Wang, C.1
  • 53
    • 84862199068 scopus 로고    scopus 로고
    • Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production
    • Lian, J., et al. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresour. Technol. 118 (2012), 177–186.
    • (2012) Bioresour. Technol. , vol.118 , pp. 177-186
    • Lian, J.1
  • 54
    • 84947996532 scopus 로고    scopus 로고
    • Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus
    • Gong, Z., et al. Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus. Biotechnol. Biofuels, 8, 2015, 189.
    • (2015) Biotechnol. Biofuels , vol.8 , pp. 189
    • Gong, Z.1
  • 55
    • 84886494325 scopus 로고    scopus 로고
    • Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol
    • Chi, Z., et al. Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour. Technol. 150 (2013), 220–227.
    • (2013) Bioresour. Technol. , vol.150 , pp. 220-227
    • Chi, Z.1
  • 56
    • 84886066910 scopus 로고    scopus 로고
    • Upgrading of bio-oil: removal of the fermentation inhibitor (furfural) from the model compounds of bio-oil using pyrolytic char
    • Li, Y., et al. Upgrading of bio-oil: removal of the fermentation inhibitor (furfural) from the model compounds of bio-oil using pyrolytic char. Energy Fuels 27 (2013), 5975–5981.
    • (2013) Energy Fuels , vol.27 , pp. 5975-5981
    • Li, Y.1
  • 57
    • 84871783686 scopus 로고    scopus 로고
    • Detoxification and fermentation of pyrolytic sugar for ethanol production
    • Wang, H., et al. Detoxification and fermentation of pyrolytic sugar for ethanol production. Appl. Biochem. Biotechnol. 168 (2012), 1568–1583.
    • (2012) Appl. Biochem. Biotechnol. , vol.168 , pp. 1568-1583
    • Wang, H.1
  • 58
    • 84897893351 scopus 로고    scopus 로고
    • Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass
    • Luque, L., et al. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass. Bioresour. Technol. 161 (2014), 20–28.
    • (2014) Bioresour. Technol. , vol.161 , pp. 20-28
    • Luque, L.1
  • 59
    • 84857455189 scopus 로고    scopus 로고
    • Biopolymers production from mixed cultures and pyrolysis by-products
    • Moita, R., Lemos, P.C., Biopolymers production from mixed cultures and pyrolysis by-products. J. Biotechnol. 157 (2012), 578–583.
    • (2012) J. Biotechnol. , vol.157 , pp. 578-583
    • Moita, R.1    Lemos, P.C.2
  • 60
    • 0041627916 scopus 로고    scopus 로고
    • Production of polyhydroxyalkanoates by mixed microbial cultures
    • Reis, M.A.M., et al. Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess Biosyst. Eng. 25 (2003), 377–385.
    • (2003) Bioprocess Biosyst. Eng. , vol.25 , pp. 377-385
    • Reis, M.A.M.1
  • 61
    • 77953608115 scopus 로고    scopus 로고
    • Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysate
    • Wierckx, N., et al. Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysate. Microbiol. Biotechnol. 3 (2010), 336–343.
    • (2010) Microbiol. Biotechnol. , vol.3 , pp. 336-343
    • Wierckx, N.1
  • 62
    • 49649090880 scopus 로고    scopus 로고
    • Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134
    • Perez-Pantoja, D., et al. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol. Rev. 32 (2008), 736–794.
    • (2008) FEMS Microbiol. Rev. , vol.32 , pp. 736-794
    • Perez-Pantoja, D.1
  • 63
    • 17144409963 scopus 로고    scopus 로고
    • Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms
    • Khiyami, M.A., et al. Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms. J. Agric. Food Chem. 53 (2005), 2978–2987.
    • (2005) J. Agric. Food Chem. , vol.53 , pp. 2978-2987
    • Khiyami, M.A.1
  • 64
    • 84928888962 scopus 로고    scopus 로고
    • A review of physical properties of biomass pyrolysis oil
    • Bardalai, M., Mahanta, D.K., A review of physical properties of biomass pyrolysis oil. Int. J. Renew. Energy Res. 5 (2015), 277–286.
    • (2015) Int. J. Renew. Energy Res. , vol.5 , pp. 277-286
    • Bardalai, M.1    Mahanta, D.K.2
  • 65
    • 84964308475 scopus 로고    scopus 로고
    • A review on pyrolysis of plastic wastes
    • Anuar Sharuddin, S.D., et al. A review on pyrolysis of plastic wastes. Energy Convers. Manage. 115 (2016), 308–326.
    • (2016) Energy Convers. Manage. , vol.115 , pp. 308-326
    • Anuar Sharuddin, S.D.1
  • 66
    • 33745724513 scopus 로고    scopus 로고
    • Biomass fast pyrolysis
    • Bridgwater, A.V., Biomass fast pyrolysis. Thermal Sci. 8 (2004), 21–50.
    • (2004) Thermal Sci. , vol.8 , pp. 21-50
    • Bridgwater, A.V.1
  • 67
    • 84942595686 scopus 로고    scopus 로고
    • Reactor configurations and design parameters for thermochemical conversion of biomass into fuels, energy, and chemicals
    • F. Shi Elsevier
    • Resende, F.L.P., Reactor configurations and design parameters for thermochemical conversion of biomass into fuels, energy, and chemicals. Shi, F., (eds.) Reactor and Process Design in Sustainable Energy Technology, 2014, Elsevier, 1–25.
    • (2014) Reactor and Process Design in Sustainable Energy Technology , pp. 1-25
    • Resende, F.L.P.1
  • 68
    • 85031301580 scopus 로고    scopus 로고
    • Hybrid sustainable composites and methods of making and using thereof, CA2014/050886.
    • Mohanty, A. et al. Hybrid sustainable composites and methods of making and using thereof, 2015, CA2014/050886.
    • (2015)
    • Mohanty, A.1
  • 69
    • 84883818507 scopus 로고    scopus 로고
    • Application of Fischer–Tropsch synthesis in biomass to liquid conversion
    • Hu, J., et al. Application of Fischer–Tropsch synthesis in biomass to liquid conversion. Catalysts 2 (2012), 303–326.
    • (2012) Catalysts , vol.2 , pp. 303-326
    • Hu, J.1
  • 70
    • 0026908672 scopus 로고
    • Bioconversion of synthesis gas into liquid or gaseous fuels
    • Klasson, K.T., et al. Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme Microb. Technol. 14 (1992), 602–608.
    • (1992) Enzyme Microb. Technol. , vol.14 , pp. 602-608
    • Klasson, K.T.1
  • 71
    • 34249931692 scopus 로고    scopus 로고
    • Microbiology of synthesis gas fermentation for biofuel production
    • Henstra, A.M., et al. Microbiology of synthesis gas fermentation for biofuel production. Curr. Opin. Biotechnol. 18 (2007), 200–206.
    • (2007) Curr. Opin. Biotechnol. , vol.18 , pp. 200-206
    • Henstra, A.M.1
  • 72
    • 34247243624 scopus 로고    scopus 로고
    • The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis
    • Demirbas, A., The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis. Fuel Process. Technol. 88 (2007), 591–597.
    • (2007) Fuel Process. Technol. , vol.88 , pp. 591-597
    • Demirbas, A.1
  • 73
    • 76049109493 scopus 로고    scopus 로고
    • Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units
    • Westerhof, R.J.M., et al. Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units. Ind. Eng. Chem. Res. 49 (2010), 1160–1168.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 1160-1168
    • Westerhof, R.J.M.1
  • 74
    • 84874010597 scopus 로고    scopus 로고
    • Fermentation of levoglucosan with oleaginous yeasts for lipid production
    • Lian, J., et al. Fermentation of levoglucosan with oleaginous yeasts for lipid production. Bioresour. Technol. 133 (2013), 183–189.
    • (2013) Bioresour. Technol. , vol.133 , pp. 183-189
    • Lian, J.1
  • 75
    • 0001627667 scopus 로고
    • Metabolism of levoglucosan (1,6-anhydro-α-D-glucopyranose) in microorganisms
    • Kitamura, Y., et al. Metabolism of levoglucosan (1,6-anhydro-α-D-glucopyranose) in microorganisms. Agric. Biol. Chem. 55 (1991), 515–521.
    • (1991) Agric. Biol. Chem. , vol.55 , pp. 515-521
    • Kitamura, Y.1
  • 76
    • 76049129588 scopus 로고    scopus 로고
    • Methods for mitigation of bio-oil extract toxicity
    • Chan, J.K.S., Duff, S.J.B., Methods for mitigation of bio-oil extract toxicity. Bioresour. Technol. 101 (2010), 3755–3759.
    • (2010) Bioresour. Technol. , vol.101 , pp. 3755-3759
    • Chan, J.K.S.1    Duff, S.J.B.2
  • 77
    • 0027909731 scopus 로고
    • Microbial utilization of levoglucosan in wood pyrolysate as a carbon and energy source
    • Prosen, E.M., et al. Microbial utilization of levoglucosan in wood pyrolysate as a carbon and energy source. Biotechnol. Bioeng. 42 (1993), 538–541.
    • (1993) Biotechnol. Bioeng. , vol.42 , pp. 538-541
    • Prosen, E.M.1
  • 78
    • 0001627668 scopus 로고
    • Metabolism of levoglucosan (1,6-anhydro-β-D-glucopyranose) in bacteria
    • Yasui, T., et al. Metabolism of levoglucosan (1,6-anhydro-β-D-glucopyranose) in bacteria. Agric. Biol. Chem. 55 (1991), 1927–1929.
    • (1991) Agric. Biol. Chem. , vol.55 , pp. 1927-1929
    • Yasui, T.1
  • 79
    • 0028675060 scopus 로고
    • Levoglucosan dehydrogenase involved in the assimilation of levoglucosan in Arthrobacter sp. I-552
    • Nakahara, K., et al. Levoglucosan dehydrogenase involved in the assimilation of levoglucosan in Arthrobacter sp. I-552. Biosci. Biotechnol. Biochem. 58 (1994), 2193–2196.
    • (1994) Biosci. Biotechnol. Biochem. , vol.58 , pp. 2193-2196
    • Nakahara, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.