메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1744-1753

Distilling an ensemble of greedy dependency parsers into one MST parser

Author keywords

[No Author keywords available]

Indexed keywords

COST BENEFIT ANALYSIS; DISTILLATION; GRAPHIC METHODS; LONG SHORT-TERM MEMORY; NATURAL LANGUAGE PROCESSING SYSTEMS; UNCERTAINTY ANALYSIS;

EID: 85021649927     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/d16-1180     Document Type: Conference Paper
Times cited : (91)

References (44)
  • 2
    • 84937961091 scopus 로고    scopus 로고
    • Do deep nets really need to be deep?
    • Jimmy Ba and Rich Caruana. 2014. Do deep nets really need to be deep? In Proc. of NIPS.
    • (2014) Proc. Of NIPS.
    • Ba, J.1    Caruana, R.2
  • 3
    • 84959879897 scopus 로고    scopus 로고
    • Improved transition-based parsing by modeling characters instead of words with LSTMs
    • Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2015. Improved transition-based parsing by modeling characters instead of words with LSTMs. In Proc. of EMNLP.
    • (2015) Proc. Of EMNLP.
    • Ballesteros, M.1    Dyer, C.2    Smith, N.A.3
  • 5
    • 84876789704 scopus 로고    scopus 로고
    • A transition-based system for joint part-of-speech tagging and labeled non-projective dependency parsing
    • Bernd Bohnet and Joakim Nivre. 2012. A transition-based system for joint part-of-speech tagging and labeled non-projective dependency parsing. In Proc. of EMNLP-CoNLL.
    • (2012) Proc. Of EMNLP-CoNLL.
    • Bohnet, B.1    Nivre, J.2
  • 7
    • 84951272941 scopus 로고    scopus 로고
    • A fast and accurate dependency parser using neural networks
    • Danqi Chen and Christopher Manning. 2014. A fast and accurate dependency parser using neural networks. In Proc. of EMNLP.
    • (2014) Proc. Of EMNLP.
    • Chen, D.1    Manning, C.2
  • 10
    • 4043070633 scopus 로고    scopus 로고
    • Three new probabilistic models for dependency parsing: An exploration
    • Jason M. Eisner. 1996. Three new probabilistic models for dependency parsing: An exploration. In Proc. of COLING.
    • (1996) Proc. Of COLING.
    • Eisner, J.M.1
  • 11
    • 84858385957 scopus 로고    scopus 로고
    • Softmaxmargin CRFs: Training log-linear models with cost functions
    • Kevin Gimpel and Noah A Smith. 2010. Softmaxmargin CRFs: Training log-linear models with cost functions. In Proc. of NAACL.
    • (2010) Proc. Of NAACL.
    • Gimpel, K.1    Smith, N.A.2
  • 13
    • 84959176782 scopus 로고    scopus 로고
    • Distilling the knowledge in a neural network
    • abs/1503.02531
    • Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the knowledge in a neural network. CoRR, abs/1503.02531.
    • (2015) CoRR
    • Hinton, G.E.1    Vinyals, O.2    Dean, J.3
  • 14
    • 85072846169 scopus 로고    scopus 로고
    • Sequence-level knowledge distillation
    • Yoon Kim and Alexander M. Rush. 2016. Sequence-level knowledge distillation. In Proc. of EMNLP.
    • (2016) Proc. Of EMNLP.
    • Kim, Y.1    Rush, A.M.2
  • 15
    • 85019553882 scopus 로고    scopus 로고
    • Simple and accurate dependency parsing using bidirectional LSTM feature representations
    • Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency parsing using bidirectional LSTM feature representations. TACL.
    • (2016) TACL
    • Kiperwasser, E.1    Goldberg, Y.2
  • 16
    • 84859952372 scopus 로고    scopus 로고
    • Efficient third-order dependency parsers
    • Terry Koo and Michael Collins. 2010. Efficient third-order dependency parsers. In Proc. of ACL.
    • (2010) Proc. Of ACL.
    • Koo, T.1    Collins, M.2
  • 17
    • 84922170814 scopus 로고    scopus 로고
    • The inside-outside recursive neural network model for dependency parsing
    • Phong Le and Willem Zuidema. 2014. The inside-outside recursive neural network model for dependency parsing. In Proc. of EMNLP.
    • (2014) Proc. Of EMNLP.
    • Le, P.1    Zuidema, W.2
  • 18
    • 84960154029 scopus 로고    scopus 로고
    • Two/too simple adaptations of word2vec for syntax problems
    • Wang Ling, Chris Dyer, Alan W Black, and Isabel Trancoso. 2015. Two/too simple adaptations of word2vec for syntax problems. In Proc. of NAACL.
    • (2015) Proc. Of NAACL.
    • Ling, W.1    Dyer, C.2    Black, A.W.3    Trancoso, I.4
  • 19
    • 84906924339 scopus 로고    scopus 로고
    • Fourth-order dependency parsing
    • Xuezhe Ma and Hai Zhao. 2012. Fourth-order dependency parsing. In Proc. of COLING.
    • (2012) Proc. Of COLING.
    • Ma, X.1    Zhao, H.2
  • 21
    • 71149105480 scopus 로고    scopus 로고
    • Polyhedral outer approximations with application to natural language parsing
    • André F. T. Martins, Noah A. Smith, and Eric P. Xing. 2009. Polyhedral outer approximations with application to natural language parsing. In Proc. of ICML.
    • (2009) Proc. Of ICML.
    • Martins, A.F.T.1    Smith, N.A.2    Xing, E.P.3
  • 22
    • 84907337196 scopus 로고    scopus 로고
    • Turning on the turbo: Fast third-order non-projective turbo parsers
    • André F. T. Martins, Mariana S.C. Almeida, and Noah A. Smith. 2013. Turning on the turbo: Fast third-order non-projective turbo parsers. In Proc. of ACL.
    • (2013) Proc. Of ACL.
    • Martins, A.F.T.1    Almeida, M.S.C.2    Smith, N.A.3
  • 23
    • 84859925125 scopus 로고    scopus 로고
    • Online large-margin training of dependency parsers
    • Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005a. Online large-margin training of dependency parsers. In Proc. of ACL.
    • (2005) Proc. Of ACL.
    • McDonald, R.1    Crammer, K.2    Pereira, F.3
  • 24
    • 80053274459 scopus 로고    scopus 로고
    • Non-projective dependency parsing using spanning tree algorithms
    • Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. 2005b. Non-projective dependency parsing using spanning tree algorithms. In Proc. of EMNLP.
    • (2005) Proc. Of EMNLP.
    • McDonald, R.1    Pereira, F.2    Ribarov, K.3    Hajic, J.4
  • 25
    • 80053375807 scopus 로고    scopus 로고
    • Integrating graph-based and transition-based dependency parsers
    • Joakim Nivre and Ryan McDonald. 2008. Integrating graph-based and transition-based dependency parsers. In Proc. of ACL.
    • (2008) Proc. Of ACL.
    • Nivre, J.1    McDonald, R.2
  • 26
    • 33746230843 scopus 로고    scopus 로고
    • An efficient algorithm for projective dependency parsing
    • Joakim Nivre. 2003. An efficient algorithm for projective dependency parsing. In Proc. of IWPT.
    • (2003) Proc. Of IWPT.
    • Nivre, J.1
  • 27
    • 79551488594 scopus 로고    scopus 로고
    • Products of random latent variable grammars
    • Slav Petrov. 2010. Products of random latent variable grammars. In Proc.of NAACL.
    • (2010) Proc.of NAACL.
    • Petrov, S.1
  • 28
    • 85119974562 scopus 로고    scopus 로고
    • Parser combination by reparsing
    • Kenji Sagae and Alon Lavie. 2006. Parser combination by reparsing. In Proc. of NAACL.
    • (2006) Proc. Of NAACL.
    • Sagae, K.1    Lavie, A.2
  • 29
    • 78650172776 scopus 로고    scopus 로고
    • Minimum risk annealing for training log-linear models
    • David A. Smith and Jason Eisner. 2006. Minimum risk annealing for training log-linear models. In Proc. of ACL.
    • (2006) Proc. Of ACL.
    • Smith, D.A.1    Eisner, J.2
  • 30
    • 84858390758 scopus 로고    scopus 로고
    • Ensemble models for dependency parsing: Cheap and good?
    • Mihai Surdeanu and Christopher D. Manning. 2010. Ensemble models for dependency parsing: Cheap and good? In Proc. of NAACL.
    • (2010) Proc. Of NAACL.
    • Surdeanu, M.1    Manning, C.D.2
  • 31
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Proc. of NIPS.
    • (2014) Proc. Of NIPS.
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 32
    • 84906924172 scopus 로고    scopus 로고
    • Target language adaptation of discriminative transfer parsers
    • Oscar Täckström, Ryan T. McDonald, and Joakim Nivre. 2013. Target language adaptation of discriminative transfer parsers. In Proc. of NAACL.
    • (2013) Proc. Of NAACL.
    • Täckström, O.1    McDonald, R.T.2    Nivre, J.3
  • 35
    • 84983470508 scopus 로고    scopus 로고
    • Feature-rich part-of-speech tagging with a cyclic dependency network
    • Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. 2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In Proc. of NAACL.
    • (2003) Proc. Of NAACL.
    • Toutanova, K.1    Klein, D.2    Manning, C.D.3    Singer, Y.4
  • 36
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. 2005. Large margin methods for structured and interdependent output variables. JMLR.
    • (2005) JMLR
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 38
    • 85011955193 scopus 로고    scopus 로고
    • Graph-based dependency parsing with bidirectional LSTM
    • Wenhui Wang and Baobao Chang. 2016. Graph-based dependency parsing with bidirectional LSTM. In Proc. of ACL.
    • (2016) Proc. Of ACL.
    • Wang, W.1    Chang, B.2
  • 39
    • 84943750795 scopus 로고    scopus 로고
    • Structured training for neural network transition-based parsing
    • David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. 2015. Structured training for neural network transition-based parsing. In Proc. of ACL.
    • (2015) Proc. Of ACL.
    • Weiss, D.1    Alberti, C.2    Collins, M.3    Petrov, S.4
  • 40
    • 33645977586 scopus 로고    scopus 로고
    • Building a large-scale annotated Chinese corpus
    • Nianwen Xue, Fu-Dong Chiou, and Martha Palmer. 2002. Building a large-scale annotated chinese corpus. In Proc. of COLING.
    • (2002) Proc. Of COLING.
    • Xue, N.1    Chiou, F.-D.2    Palmer, M.3
  • 41
    • 85009443541 scopus 로고    scopus 로고
    • Incremental recurrent neural network dependency parser with search-based discriminative training
    • Majid Yazdani and James Henderson. 2015. Incremental recurrent neural network dependency parser with search-based discriminative training. In Proc. of CoNLL.
    • (2015) Proc. Of CoNLL.
    • Yazdani, M.1    Henderson, J.2
  • 42
    • 80053354167 scopus 로고    scopus 로고
    • A tale of two parsers: Investigating and combining graph-based and transition-based dependency parsing using beam-search
    • Yue Zhang and Stephen Clark. 2008. A tale of two parsers: Investigating and combining graph-based and transition-based dependency parsing using beam-search. In Proc. of EMNLP.
    • (2008) Proc. Of EMNLP.
    • Zhang, Y.1    Clark, S.2
  • 43
    • 84859018340 scopus 로고    scopus 로고
    • Transition-based dependency parsing with rich non-local features
    • Yue Zhang and Joakim Nivre. 2011. Transition-based dependency parsing with rich non-local features. In Proc. of ACL.
    • (2011) Proc. Of ACL.
    • Zhang, Y.1    Nivre, J.2
  • 44
    • 84943772427 scopus 로고    scopus 로고
    • A re-ranking model for dependency parser with recursive convolutional neural network
    • Chenxi Zhu, Xipeng Qiu, Xinchi Chen, and Xuanjing Huang. 2015. A re-ranking model for dependency parser with recursive convolutional neural network. In Proc. of ACL-IJCNLP.
    • (2015) Proc. Of ACL-IJCNLP.
    • Zhu, C.1    Qiu, X.2    Chen, X.3    Huang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.