메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1317-1327

Sequence-level knowledge distillation

Author keywords

[No Author keywords available]

Indexed keywords

NATURAL LANGUAGE PROCESSING SYSTEMS; TRANSLATION (LANGUAGES);

EID: 85072846169     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/d16-1139     Document Type: Conference Paper
Times cited : (1027)

References (53)
  • 1
  • 2
    • 85083953689 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of ICLR.
    • (2015) Proceedings of ICLR
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 8
    • 84860663465 scopus 로고    scopus 로고
    • Hope and fear for discriminative training of statistical translation models
    • David Chiang. 2012. Hope and Fear for Discriminative Training of Statistical Translation Models. In JMLR.
    • (2012) JMLR
    • Chiang, D.1
  • 14
    • 84937896655 scopus 로고    scopus 로고
    • Exploiting linear structure within convolutional neural networks for efficient evaluation
    • Emily L. Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. 2014. Exploiting Linear Structure within Convolutional Neural Networks for Efficient Evaluation. In Proceedings of NIPS.
    • (2014) Proceedings of NIPS
    • Denton, E.L.1    Zaremba, W.2    Bruna, J.3    LeCun, Y.4    Fergus, R.5
  • 17
    • 85083950579 scopus 로고    scopus 로고
    • Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
    • Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. In Proceedings of ICLR.
    • (2016) Proceedings of ICLR
    • Han, S.1    Mao, H.2    Dally, W.J.3
  • 18
    • 84905224450 scopus 로고    scopus 로고
    • Reshaping deep neural network for fast decoding by node-pruning
    • Tianxing He, Yuchen Fan, Yanmin Qian, Tian Tan, and Kai Yu. 2014. Reshaping Deep Neural Network for Fast Decoding by Node-Pruning. In Proceedings of ICASSP.
    • (2014) Proceedings of ICASSP
    • He, T.1    Fan, Y.2    Qian, Y.3    Tan, T.4    Yu, K.5
  • 20
    • 85062833929 scopus 로고    scopus 로고
    • Speeding up convolutional neural networks with low rank expansions
    • Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Speeding up Convolutional Neural Networks with Low Rank Expansions. In BMCV.
    • (2014) BMCV
    • Jaderberg, M.1    Vedaldi, A.2    Zisserman, A.3
  • 26
  • 27
    • 84994184277 scopus 로고    scopus 로고
    • A diversity-promoting objective function for neural conversational models
    • Jiwei Li, Michael Galley, Chris Brockett, Jianfeg Gao, and Bill Dolan. 2016. A Diversity-Promoting Objective Function for Neural Conversational Models. In Proceedings of NAACL 2016.
    • (2016) Proceedings of NAACL 2016
    • Li, J.1    Galley, M.2    Brockett, C.3    Gao, J.4    Dolan, B.5
  • 33
    • 84959874994 scopus 로고    scopus 로고
    • Effective Approaches to Attention-based Neural Machine Translation
    • Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective Approaches to Attention-based Neural Machine Translation. In Proceedings of EMNLP.
    • (2015) Proceedings of EMNLP
    • Luong, M.-T.1    Pham, H.2    Manning, C.D.3
  • 36
    • 84959882423 scopus 로고    scopus 로고
    • Auto-sizing Neural Networks: With applications to n-gram language models
    • Kenton Murray and David Chiang. 2015. Auto-sizing Neural Networks: With Applications to N-Gram Language Models. In Proceedings of EMNLP.
    • (2015) Proceedings of EMNLP
    • Murray, K.1    Chiang, D.2
  • 37
    • 84944098666 scopus 로고    scopus 로고
    • Minimum error rate training in statistical machine translation
    • Franz J. Och. 2003. Minimum Error Rate Training in Statistical Machine Translation. In Proceedings of ACL.
    • (2003) Proceedings of ACL
    • Och, F.J.1
  • 38
    • 85133336275 scopus 로고    scopus 로고
    • BLEU: A method for automatic evaluation of machine translation
    • Kishore Papineni, Slim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A Method for Automatic Evaluation of Machine Translation. In Proceedings of ICML.
    • (2002) Proceedings of ICML
    • Papineni, K.1    Roukos, S.2    Ward, T.3    Zhu, W.-J.4
  • 39
    • 84973402069 scopus 로고    scopus 로고
    • On the compression of recurrent neural networks with an application to LVCSR acoustic modeling for embedded speech recognition
    • Rohit Prabhavalkar, Ouais Alsharif, Antoine Bruguier, and Ian McGraw. 2016. On the Compression of Recurrent Neural Networks with an Application to LVCSR Acoustic Modeling for Embedded Speech Recognition. In Proceedings of ICASSP.
    • (2016) Proceedings of ICASSP
    • Prabhavalkar, R.1    Alsharif, O.2    Bruguier, A.3    McGraw, I.4
  • 41
    • 84867135104 scopus 로고    scopus 로고
    • A reduction of imitation learning and structured prediction to no-regret online learning
    • Stephane Ross, Geoffrey J. Gordon, and Drew Bagnell. 2011. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. In Proceedings of AISTATS.
    • (2011) Proceedings of AISTATS
    • Ross, S.1    Gordon, G.J.2    Bagnell, D.3
  • 42
    • 84957571911 scopus 로고    scopus 로고
    • A neural attention model for abstractive sentence summarization
    • Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A Neural Attention Model for Abstractive Sentence Summarization. In Proceedings of EMNLP.
    • (2015) Proceedings of EMNLP
    • Rush, A.M.1    Chopra, S.2    Weston, J.3
  • 43
    • 85072755358 scopus 로고    scopus 로고
    • Compression of neural machine translation via pruning
    • Abigail See, Minh-Thang Luong, and Christopher D. Manning. 2016. Compression of Neural Machine Translation via Pruning. In Proceedings of CoNLL.
    • (2016) Proceedings of CoNLL
    • See, A.1    Luong, M.-T.2    Manning, C.D.3
  • 44
    • 84980367197 scopus 로고    scopus 로고
    • Building end-to-end dialogue systems using generative hierarchical neural network models
    • Iulian V. Serban, Allesandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. 2016. Building End-to-End Dialogue Systems Using Generative Hierarchical Neural Network Models. In Proceedings of AAAI.
    • (2016) Proceedings of AAAI
    • Serban, I.V.1    Sordoni, A.2    Bengio, Y.3    Courville, A.4    Pineau, J.5
  • 46
    • 84965123123 scopus 로고    scopus 로고
    • Data-free Parameter Pruning for Deep Neural Networks
    • Suraj Srinivas and R. Venkatesh Babu. 2015. Data-free Parameter Pruning for Deep Neural Networks. BMVC.
    • (2015) BMVC
    • Srinivas, S.1    Venkatesh Babu, R.2
  • 48
  • 53
    • 85040594930 scopus 로고    scopus 로고
    • Deep recurrent models with fast-forward connections for neural machine translation
    • Jie Zhou, Ying Cao, Xuguang Wang, Peng Li, and Wei Xu. 2016. Deep Recurrent Models with Fast-Forward Connections for Neural Machine Translation. In Proceedings of TACL.
    • (2016) Proceedings of TACL
    • Zhou, J.1    Cao, Y.2    Wang, X.3    Li, P.4    Xu, W.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.