메뉴 건너뛰기




Volumn , Issue , 2010, Pages 733-736

Softmax-Margin CRFs: Training log-linear models with cost functions

Author keywords

[No Author keywords available]

Indexed keywords

LOG LIKELIHOOD; LOGLINEAR MODEL; NAMED-ENTITY RECOGNITION; STRUCTURED MODEL; STRUCTURED PREDICTION;

EID: 84858385957     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (131)

References (22)
  • 2
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms
    • M. Collins. 2002a. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In Proc. of EMNLP.
    • (2002) Proc. of EMNLP
    • Collins, M.1
  • 3
    • 85045072379 scopus 로고    scopus 로고
    • Ranking algorithms for named-entity extraction: Boosting and the voted perceptron
    • M. Collins. 2002b. Ranking algorithms for named-entity extraction: Boosting and the voted perceptron. In Proc. of ACL.
    • (2002) Proc. of ACL
    • Collins, M.1
  • 5
    • 80053262704 scopus 로고    scopus 로고
    • Softmax-margin training for structured log-linear models
    • Carnegie Mellon University
    • K. Gimpel and N. A. Smith. 2010. Softmax-margin training for structured log-linear models. Technical report, Carnegie Mellon University.
    • (2010) Technical Report
    • Gimpel, K.1    Smith, N.A.2
  • 6
    • 70349336577 scopus 로고    scopus 로고
    • Maximum expected F-measure training of logistic regression models
    • M. Jansche. 2005. Maximum expected F-measure training of logistic regression models. In Proc. of HLT-EMNLP.
    • (2005) Proc. of HLT-EMNLP
    • Jansche, M.1
  • 7
    • 84871614543 scopus 로고    scopus 로고
    • A novel loss function for the overall risk criterion based discriminative training of HMM models
    • J. Kaiser, B. Horvat, and Z. Kacic. 2000. A novel loss function for the overall risk criterion based discriminative training of HMM models. In Proc. of ICSLP.
    • (2000) Proc. of ICSLP
    • Kaiser, J.1    Horvat, B.2    Kacic, Z.3
  • 8
    • 14344254644 scopus 로고    scopus 로고
    • An alternate objective function for Markovian fields
    • S. Kakade, Y. W. Teh, and S. Roweis. 2002. An alternate objective function for Markovian fields. In Proc. of ICML.
    • (2002) Proc. of ICML
    • Kakade, S.1    Teh, Y.W.2    Roweis, S.3
  • 9
    • 77956854902 scopus 로고    scopus 로고
    • A new perceptron algorithm for sequence labeling with non-local features
    • J. Kazama and K. Torisawa. 2007. A new perceptron algorithm for sequence labeling with non-local features. In Proc. of EMNLP-CoNLL.
    • (2007) Proc. of EMNLP-CoNLL
    • Kazama, J.1    Torisawa, K.2
  • 10
    • 85011809824 scopus 로고    scopus 로고
    • Statistical significance tests for machine translation evaluation
    • P. Koehn. 2004. Statistical significance tests for machine translation evaluation. In Proc. of EMNLP.
    • (2004) Proc. of EMNLP
    • Koehn, P.1
  • 11
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. of ICML.
    • (2001) Proc. of ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 12
    • 80053275857 scopus 로고    scopus 로고
    • First-and second-order expectation semirings with applications to minimum-risk training on translation forests
    • Z. Li and J. Eisner. 2009. First-and second-order expectation semirings with applications to minimum-risk training on translation forests. In Proc. of EMNLP.
    • (2009) Proc. of EMNLP
    • Li, Z.1    Eisner, J.2
  • 13
    • 22944447077 scopus 로고    scopus 로고
    • Minimum error rate training for statistical machine translation
    • F. J. Och. 2003. Minimum error rate training for statistical machine translation. In Proc. of ACL.
    • (2003) Proc. of ACL
    • Och, F.J.1
  • 14
    • 0036296863 scopus 로고    scopus 로고
    • Minimum phone error and I-smoothing for improved discrimative training
    • D. Povey and P. C. Woodland. 2002. Minimum phone error and I-smoothing for improved discrimative training. In Proc. of ICASSP.
    • (2002) Proc. of ICASSP
    • Povey, D.1    Woodland, C.P.2
  • 17
    • 85078843680 scopus 로고    scopus 로고
    • Large margin hidden Markov models for automatic speech recognition
    • F. Sha and L. K. Saul. 2006. Large margin hidden Markov models for automatic speech recognition. In Proc. of NIPS.
    • (2006) Proc. of NIPS
    • Sha, F.1    Saul, L.K.2
  • 18
    • 84961299250 scopus 로고    scopus 로고
    • Minimum risk annealing for training log-linear models
    • D. A. Smith and J. Eisner. 2006. Minimum risk annealing for training log-linear models. In Proc. of COLING-ACL.
    • (2006) Proc. of COLING-ACL
    • Smith, D.A.1    Eisner, J.2
  • 19
    • 84860500490 scopus 로고    scopus 로고
    • Training conditional random fields with multivariate evaluation measures
    • J. Suzuki, E. McDermott, and H. Isozaki. 2006. Training conditional random fields with multivariate evaluation measures. In Proc. of COLING-ACL.
    • (2006) Proc. of COLING-ACL
    • Suzuki, J.1    McDermott, E.2    Isozaki, H.3
  • 21
    • 85099019865 scopus 로고    scopus 로고
    • Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition
    • E. F. Tjong Kim Sang and F. De Meulder. 2003. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In Proc. of CoNLL.
    • (2003) Proc. of CoNLL
    • Tjong KimSang, E.F.1    De Meulder, F.2
  • 22
    • 55549127511 scopus 로고    scopus 로고
    • Minimum tag error for discriminative training of conditional random fields
    • Y. Xiong, J. Zhu, H. Huang, and H. Xu. 2009. Minimum tag error for discriminative training of conditional random fields. Information Sciences, 179(1-2):169-179.
    • (2009) Information Sciences , vol.179 , Issue.1-2 , pp. 169-179
    • Xiong, Y.1    Zhu, J.2    Huang, H.3    Xu, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.