메뉴 건너뛰기




Volumn 19, Issue 12, 2017, Pages 2812-2825

Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85021354305     PISSN: 14639262     EISSN: 14639270     Source Type: Journal    
DOI: 10.1039/c7gc00320j     Document Type: Article
Times cited : (55)

References (91)
  • 2
    • 31544452808 scopus 로고    scopus 로고
    • The path forward for biofuels and biomaterials
    • A. J. Ragauskas et al., The path forward for biofuels and biomaterials Science 2006 311 484 489
    • (2006) Science , vol.311 , pp. 484-489
    • Ragauskas, A.J.1
  • 4
    • 34447129755 scopus 로고    scopus 로고
    • Chemical routes for the transformation of biomass into chemicals
    • A. Corma S. Iborra A. Velty Chemical routes for the transformation of biomass into chemicals Chem. Rev. 2007 107 2411 2502
    • (2007) Chem. Rev. , vol.107 , pp. 2411-2502
    • Corma, A.1    Iborra, S.2    Velty, A.3
  • 5
    • 43549122821 scopus 로고    scopus 로고
    • Platform biochemicals for a biorenewable chemical industry
    • B. J. Nikolau M. A. D. N. Perera L. Brachova B. Shanks Platform biochemicals for a biorenewable chemical industry Plant J. 2008 54 536 545
    • (2008) Plant J. , vol.54 , pp. 536-545
    • Nikolau, B.J.1    Perera, M.A.D.N.2    Brachova, L.3    Shanks, B.4
  • 6
    • 47549112707 scopus 로고    scopus 로고
    • E factors, green chemistry and catalysis: An odyssey
    • R. A. Sheldon E factors, green chemistry and catalysis: an odyssey Chem. Commun. 2008 3352 3365
    • (2008) Chem. Commun. , pp. 3352-3365
    • Sheldon, R.A.1
  • 7
    • 38949133795 scopus 로고    scopus 로고
    • Polymers from Renewable Resources: A Perspective for a Special Issue of Polymer Reviews
    • C. K. Williams M. A. Hillmyer Polymers from Renewable Resources: A Perspective for a Special Issue of Polymer Reviews Polym. Rev. 2008 48 1 10
    • (2008) Polym. Rev. , vol.48 , pp. 1-10
    • Williams, C.K.1    Hillmyer, M.A.2
  • 8
    • 77953307637 scopus 로고    scopus 로고
    • The catalytic valorization of lignin for the production of renewable chemicals
    • J. Zakzeski P. C. A. Bruijnincx A. L. Jongerius B. M. Weckhuysen The catalytic valorization of lignin for the production of renewable chemicals Chem. Rev. 2010 110 3552 3599
    • (2010) Chem. Rev. , vol.110 , pp. 3552-3599
    • Zakzeski, J.1    Bruijnincx, P.C.A.2    Jongerius, A.L.3    Weckhuysen, B.M.4
  • 11
    • 84906309043 scopus 로고    scopus 로고
    • Lignin valorization through integrated biological funneling and chemical catalysis
    • J. G. Linger et al., Lignin valorization through integrated biological funneling and chemical catalysis Proc. Natl. Acad. Sci. U. S. A. 2014 111 12013 12018
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 12013-12018
    • Linger, J.G.1
  • 12
    • 84990200302 scopus 로고    scopus 로고
    • Lignin Profiling: A Guide for Selecting Appropriate Lignins as Precursors in Biomaterials Development
    • B. Ahvazi É. Cloutier O. Wojciechowicz T.-D. Ngo Lignin Profiling: A Guide for Selecting Appropriate Lignins as Precursors in Biomaterials Development ACS Sustainable Chem. Eng. 2016 4 10 5090 5105
    • (2016) ACS Sustainable Chem. Eng. , vol.4 , Issue.10 , pp. 5090-5105
    • Ahvazi, B.1    Cloutier, É.2    Wojciechowicz, O.3    Ngo, T.-D.4
  • 13
    • 85016152239 scopus 로고    scopus 로고
    • Sustainable polymers from renewable resources
    • Y. Zhu C. Romain C. K. Williams Sustainable polymers from renewable resources Nature 2016 540 354 362
    • (2016) Nature , vol.540 , pp. 354-362
    • Zhu, Y.1    Romain, C.2    Williams, C.K.3
  • 14
    • 84968648928 scopus 로고    scopus 로고
    • The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass
    • M. Biddy et al., The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass ACS Sustainable Chem. Eng. 2016 4 3196 3211
    • (2016) ACS Sustainable Chem. Eng. , vol.4 , pp. 3196-3211
    • Biddy, M.1
  • 15
    • 0032997255 scopus 로고    scopus 로고
    • Biotechnology of succinic acid production and markets for derived industrial products
    • J. G. Zeikus M. K. Jain P. Elankovan Biotechnology of succinic acid production and markets for derived industrial products Appl. Microbiol. Biotechnol. 1999 51 545 552
    • (1999) Appl. Microbiol. Biotechnol. , vol.51 , pp. 545-552
    • Zeikus, J.G.1    Jain, M.K.2    Elankovan, P.3
  • 16
    • 33747280991 scopus 로고    scopus 로고
    • Production of succinic acid by bacterial fermentation
    • H. Song S. Y. Lee Production of succinic acid by bacterial fermentation Enzyme Microb. Technol. 2006 39 352 361
    • (2006) Enzyme Microb. Technol. , vol.39 , pp. 352-361
    • Song, H.1    Lee, S.Y.2
  • 17
    • 44049105889 scopus 로고    scopus 로고
    • Succinic acid: A new platform chemical for biobased polymers from renewable resources
    • I. Bechthold K. Bretz S. Kabasci R. Kopitzky A. Springer Succinic acid: A new platform chemical for biobased polymers from renewable resources Chem. Eng. Technol. 2008 31 647 654
    • (2008) Chem. Eng. Technol. , vol.31 , pp. 647-654
    • Bechthold, I.1    Bretz, K.2    Kabasci, S.3    Kopitzky, R.4    Springer, A.5
  • 19
    • 84881028723 scopus 로고    scopus 로고
    • Toward biotechnological production of adipic acid and precursors from biorenewables
    • T. Polen M. Spelberg M. Bott Toward biotechnological production of adipic acid and precursors from biorenewables J. Biotechnol. 2013 167 75 84
    • (2013) J. Biotechnol. , vol.167 , pp. 75-84
    • Polen, T.1    Spelberg, M.2    Bott, M.3
  • 20
    • 84900526615 scopus 로고    scopus 로고
    • Biotechnological production of muconic acid: Current status and future prospects
    • N. Z. Xie H. Liang R. B. Huang P. Xu Biotechnological production of muconic acid: current status and future prospects Biotechnol. Adv. 2014 32 615 622
    • (2014) Biotechnol. Adv. , vol.32 , pp. 615-622
    • Xie, N.Z.1    Liang, H.2    Huang, R.B.3    Xu, P.4
  • 21
    • 84929401437 scopus 로고    scopus 로고
    • Adipic acid production from lignin
    • D. R. Vardon et al., Adipic acid production from lignin Energy Environ. Sci. 2015 8 617 628
    • (2015) Energy Environ. Sci. , vol.8 , pp. 617-628
    • Vardon, D.R.1
  • 22
    • 84964948762 scopus 로고    scopus 로고
    • Cis,cis-Muconic acid: Separation and catalysis to bio-adipic acid for nylon-6,6 polymerization
    • D. R. Vardon et al., cis,cis-Muconic acid: Separation and catalysis to bio-adipic acid for nylon-6,6 polymerization Green Chem. 2016 18 3397 3413
    • (2016) Green Chem. , vol.18 , pp. 3397-3413
    • Vardon, D.R.1
  • 24
    • 85024495218 scopus 로고    scopus 로고
    • Dimer acid derivatives as enhancers
    • Ashland
    • C. L. Smith and D. H. Fisher, Dimer acid derivatives as enhancers, US 6617394, Ashland, 2001
    • (2001) US , pp. 6617394
    • Smith, C.L.1    Fisher, D.H.2
  • 25
    • 34848880727 scopus 로고    scopus 로고
    • Plant oil renewable resources as green alternatives in polymer science
    • M. A. R. Meier J. O. Metzger U. S. Schubert Plant oil renewable resources as green alternatives in polymer science Chem. Soc. Rev. 2007 36 1788 1802
    • (2007) Chem. Soc. Rev. , vol.36 , pp. 1788-1802
    • Meier, M.A.R.1    Metzger, J.O.2    Schubert, U.S.3
  • 26
    • 79958802177 scopus 로고    scopus 로고
    • Long-Chain Linear C19 and C23 Monomers and Polycondensates from Unsaturated Fatty Acid Esters
    • F. Stempfle D. Quinzler I. Heckler S. Mecking Long-Chain Linear C19 and C23 Monomers and Polycondensates from Unsaturated Fatty Acid Esters Macromolecules 2011 44 4159 4166
    • (2011) Macromolecules , vol.44 , pp. 4159-4166
    • Stempfle, F.1    Quinzler, D.2    Heckler, I.3    Mecking, S.4
  • 28
    • 0033119054 scopus 로고    scopus 로고
    • Production of fumaric acid by fermentation of enzymatic hydrolysates derived from cassava bagasse
    • F. S. Carta C. R. Soccol L. P. Ramos J. D. Fontana Production of fumaric acid by fermentation of enzymatic hydrolysates derived from cassava bagasse Bioresour. Technol. 1999 68 23 28
    • (1999) Bioresour. Technol. , vol.68 , pp. 23-28
    • Carta, F.S.1    Soccol, C.R.2    Ramos, L.P.3    Fontana, J.D.4
  • 29
    • 84867699642 scopus 로고    scopus 로고
    • Key technologies for the industrial production of fumaric acid by fermentation
    • Q. Xu S. Li H. Huang J. Wen Key technologies for the industrial production of fumaric acid by fermentation Biotechnol. Adv. 2012 30 1685 1696
    • (2012) Biotechnol. Adv. , vol.30 , pp. 1685-1696
    • Xu, Q.1    Li, S.2    Huang, H.3    Wen, J.4
  • 30
    • 0028286911 scopus 로고
    • Environmentally compatible synthesis of adipic acid from D-glucose
    • K. M. Draths J. W. Frost Environmentally compatible synthesis of adipic acid from D-glucose J. Am. Chem. Soc. 1994 116 399 400
    • (1994) J. Am. Chem. Soc. , vol.116 , pp. 399-400
    • Draths, K.M.1    Frost, J.W.2
  • 31
    • 58149293290 scopus 로고    scopus 로고
    • Succinic acid from renewable resources as a C 4 building-block chemical - A review of the catalytic possibilities in aqueous media
    • C. Delhomme D. Weuster-Botz F. E. Kühn Succinic acid from renewable resources as a C 4 building-block chemical - a review of the catalytic possibilities in aqueous media Green Chem. 2009 11 13 26
    • (2009) Green Chem. , vol.11 , pp. 13-26
    • Delhomme, C.1    Weuster-Botz, D.2    Kühn, F.E.3
  • 32
    • 84936850846 scopus 로고    scopus 로고
    • Synthesis of Unsaturated Polyester Resins from Various Bio-Derived Platform Molecules
    • T. J. Farmer R. L. Castle J. H. Clark D. J. Macquarrie Synthesis of Unsaturated Polyester Resins from Various Bio-Derived Platform Molecules Int. J. Mol. Sci. 2015 16 14912 14932
    • (2015) Int. J. Mol. Sci. , vol.16 , pp. 14912-14932
    • Farmer, T.J.1    Castle, R.L.2    Clark, J.H.3    Macquarrie, D.J.4
  • 33
    • 85002338994 scopus 로고    scopus 로고
    • Renewable Unsaturated Polyesters from Muconic Acid
    • N. A. Rorrer et al., Renewable Unsaturated Polyesters from Muconic Acid ACS Sustainable Chem. Eng. 2016 4 12 6867 6876
    • (2016) ACS Sustainable Chem. Eng. , vol.4 , Issue.12 , pp. 6867-6876
    • Rorrer, N.A.1
  • 37
    • 85024501692 scopus 로고
    • Unsaturated polyester resinous compositions
    • R&H
    • C. H. Kroekel, Unsaturated polyester resinous compositions, US 3772241, R&H, 1971
    • (1971) US , pp. 3772241
    • Kroekel, C.H.1
  • 39
    • 0000106684 scopus 로고
    • Physical Properties of Polyester Resin
    • E. E. Parker E. W. Moffett Physical Properties of Polyester Resin Ind. Eng. Chem. 1954 46 1615 1618
    • (1954) Ind. Eng. Chem. , vol.46 , pp. 1615-1618
    • Parker, E.E.1    Moffett, E.W.2
  • 41
    • 84870834865 scopus 로고    scopus 로고
    • Biosynthesis of cis,cis-Muconic Acid and Its Aromatic Precursors, Catechol and Protocatechuic Acid, from Renewable Feedstocks by Saccharomyces cerevisiae
    • C. Weber et al., Biosynthesis of cis,cis-Muconic Acid and Its Aromatic Precursors, Catechol and Protocatechuic Acid, from Renewable Feedstocks by Saccharomyces cerevisiae Appl. Environ. Microbiol. 2012 78 8421 8430
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 8421-8430
    • Weber, C.1
  • 42
    • 85024473753 scopus 로고    scopus 로고
    • Preparation of trans, trans muconic acid and trans, trans muconates
    • Amyris
    • J. W. Frost, A. Miermont, D. Schweitzer and V. Bui, Preparation of trans, trans muconic acid and trans, trans muconates, US 8426639, Amyris, 2010
    • (2010) US , pp. 8426639
    • Frost, J.W.1    Miermont, A.2    Schweitzer, D.3    Bui, V.4
  • 43
    • 84875265625 scopus 로고    scopus 로고
    • Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
    • K. A. Curran J. M. Leavitt A. S. Karim H. S. Alper Metabolic engineering of muconic acid production in Saccharomyces cerevisiae Metab. Eng. 2013 15 55 66
    • (2013) Metab. Eng. , vol.15 , pp. 55-66
    • Curran, K.A.1    Leavitt, J.M.2    Karim, A.S.3    Alper, H.S.4
  • 44
    • 85006412293 scopus 로고    scopus 로고
    • Biological Production of Muconic Acid via a Prokaryotic 2,3-Dihydroxybenzoic Acid Decarboxylase
    • X. Sun Y. Lin Q. Yuan Y. Yan Biological Production of Muconic Acid via a Prokaryotic 2,3-Dihydroxybenzoic Acid Decarboxylase ChemSusChem 2014 7 2478 2481
    • (2014) ChemSusChem , vol.7 , pp. 2478-2481
    • Sun, X.1    Lin, Y.2    Yuan, Q.3    Yan, Y.4
  • 45
    • 84964949918 scopus 로고    scopus 로고
    • Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity
    • C. W. Johnson et al., Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity Metab. Eng. Commun. 2016 3 111 119
    • (2016) Metab. Eng. Commun. , vol.3 , pp. 111-119
    • Johnson, C.W.1
  • 47
    • 84955169464 scopus 로고    scopus 로고
    • Production of diethyl terephthalate from biomass-derived muconic acid
    • R. Lu et al., Production of diethyl terephthalate from biomass-derived muconic acid Angew. Chem., Int. Ed. 2016 55 249 253
    • (2016) Angew. Chem., Int. Ed. , vol.55 , pp. 249-253
    • Lu, R.1
  • 48
    • 79959374585 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
    • H. Yim et al., Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol Nat. Chem. Biol. 2011 7 445 452
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 445-452
    • Yim, H.1
  • 49
    • 0034188187 scopus 로고    scopus 로고
    • Use of composites for 21st century civil infrastructure
    • V. M. Karbhari L. Zhao Use of composites for 21st century civil infrastructure Comput. Methods Appl. Mech. Eng. 2000 185 433 454
    • (2000) Comput. Methods Appl. Mech. Eng. , vol.185 , pp. 433-454
    • Karbhari, V.M.1    Zhao, L.2
  • 50
    • 84965043892 scopus 로고    scopus 로고
    • (National Toxicology Program, Department of Helath and Human Services)
    • Report on Carcinogens, Twelfth Edition, 383 (National Toxicology Program, Department of Helath and Human Services), 2011
    • (2011) Report on Carcinogens, Twelfth Edition , vol.383
  • 51
    • 0036405482 scopus 로고    scopus 로고
    • Mechanisms of Solvent Tolerance in Gram-Negative Bacteria
    • J. L. Ramos et al., Mechanisms of Solvent Tolerance in Gram-Negative Bacteria Annu. Rev. Microbiol. 2002 56 743 768
    • (2002) Annu. Rev. Microbiol. , vol.56 , pp. 743-768
    • Ramos, J.L.1
  • 52
    • 80052027792 scopus 로고    scopus 로고
    • Styrene biosynthesis from glucose by engineered E. Coli.
    • R. McKenna D. R. Nielsen Styrene biosynthesis from glucose by engineered E. coli. Metab. Eng. 2011 13 544 554
    • (2011) Metab. Eng. , vol.13 , pp. 544-554
    • McKenna, R.1    Nielsen, D.R.2
  • 53
    • 84955264971 scopus 로고    scopus 로고
    • Production of biorenewable styrene: Utilization of biomass-derived sugars and insights into toxicity
    • J. Lian et al., Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity J. Ind. Microbiol. Biotechnol. 2016 43 595 604
    • (2016) J. Ind. Microbiol. Biotechnol. , vol.43 , pp. 595-604
    • Lian, J.1
  • 54
    • 0032325182 scopus 로고    scopus 로고
    • Effects of chemical composition and structure of unsaturated polyester resins on the miscibility, cured sample morphology and mechanical properties for styrene/unsaturated polyester/low-profile additive ternary systems. 1: Miscibility and cured sample morphology
    • Y.-J. Huang W.-C. Jiang Effects of chemical composition and structure of unsaturated polyester resins on the miscibility, cured sample morphology and mechanical properties for styrene/unsaturated polyester/low-profile additive ternary systems. 1: Miscibility and cured sample morphology Polymer 1998 39 6631 6641
    • (1998) Polymer , vol.39 , pp. 6631-6641
    • Huang, Y.-J.1    Jiang, W.-C.2
  • 55
    • 0028486155 scopus 로고
    • Study of the sequential conversion of citric to itaconic to methacrylic acid in near-critical and supercritical water
    • M. Carlsson et al., Study of the sequential conversion of citric to itaconic to methacrylic acid in near-critical and supercritical water Ind. Eng. Chem. Res. 1994 33 1989 1996
    • (1994) Ind. Eng. Chem. Res. , vol.33 , pp. 1989-1996
    • Carlsson, M.1
  • 56
    • 84875871384 scopus 로고    scopus 로고
    • Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process
    • Q. Song et al., Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process Energy Environ. Sci. 2013 6 994
    • (2013) Energy Environ. Sci. , vol.6 , pp. 994
    • Song, Q.1
  • 57
    • 84900453510 scopus 로고    scopus 로고
    • Lignin valorization: Improving lignin processing in the biorefinery
    • A. J. Ragauskas et al., Lignin valorization: Improving lignin processing in the biorefinery Science 2014 344 1246843
    • (2014) Science , vol.344 , pp. 1246843
    • Ragauskas, A.J.1
  • 58
    • 84930748158 scopus 로고    scopus 로고
    • Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps
    • S. V. den Bosch et al., Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps Energy Environ. Sci. 2015 8 1748 1763
    • (2015) Energy Environ. Sci. , vol.8 , pp. 1748-1763
    • Den Bosch, S.V.1
  • 59
    • 84924370719 scopus 로고    scopus 로고
    • A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass
    • T. Parsell et al., A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass Green Chem. 2015 17 1492 1499
    • (2015) Green Chem. , vol.17 , pp. 1492-1499
    • Parsell, T.1
  • 60
    • 85002489732 scopus 로고    scopus 로고
    • Reductive Catalytic Fractionation of Corn Stover Lignin
    • E. M. Anderson et al., Reductive Catalytic Fractionation of Corn Stover Lignin ACS Sustainable Chem. Eng. 2016 4 6940 6950
    • (2016) ACS Sustainable Chem. Eng. , vol.4 , pp. 6940-6950
    • Anderson, E.M.1
  • 62
    • 84860535394 scopus 로고    scopus 로고
    • A Review of the Environmental Impacts of Biobased Materials
    • M. Weiss et al., A Review of the Environmental Impacts of Biobased Materials J. Ind. Ecol. 2012 16 S169 S181
    • (2012) J. Ind. Ecol. , vol.16 , pp. S169-S181
    • Weiss, M.1
  • 64
    • 0035834840 scopus 로고    scopus 로고
    • Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-butanediol
    • B. D. Ahn S. H. Kim Y. H. Kim J. S. Yang Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-butanediol J. Appl. Polym. Sci. 2001 82 2808 2826
    • (2001) J. Appl. Polym. Sci. , vol.82 , pp. 2808-2826
    • Ahn, B.D.1    Kim, S.H.2    Kim, Y.H.3    Yang, J.S.4
  • 65
    • 59649121316 scopus 로고    scopus 로고
    • Synthesis and characterization of poly(ethylene succinate) and its copolyesters containing minor amounts of butylene succinate
    • C.-H. Chen et al., Synthesis and characterization of poly(ethylene succinate) and its copolyesters containing minor amounts of butylene succinate J. Appl. Polym. Sci. 2009 111 1433 1439
    • (2009) J. Appl. Polym. Sci. , vol.111 , pp. 1433-1439
    • Chen, C.-H.1
  • 66
    • 0034783421 scopus 로고    scopus 로고
    • Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s
    • M. S. Nikolic J. Djonlagic Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s Polym. Degrad. Stab. 2001 74 263 270
    • (2001) Polym. Degrad. Stab. , vol.74 , pp. 263-270
    • Nikolic, M.S.1    Djonlagic, J.2
  • 67
    • 0027961371 scopus 로고
    • Mechanical and viscoelastic properties of short fiber reinforced natural rubber composites: Effects of interfacial adhesion, fiber loading, and orientation
    • S. Varghese B. Kuriakose S. Thomas A. T. Koshy Mechanical and viscoelastic properties of short fiber reinforced natural rubber composites: effects of interfacial adhesion, fiber loading, and orientation J. Adhes. Sci. Technol. 1994 8 235 248
    • (1994) J. Adhes. Sci. Technol. , vol.8 , pp. 235-248
    • Varghese, S.1    Kuriakose, B.2    Thomas, S.3    Koshy, A.T.4
  • 68
    • 0026632136 scopus 로고
    • Comparison of methods for the measurement of fibre/matrix adhesion in composites
    • P. J. Herrera-Franco L. T. Drzal Comparison of methods for the measurement of fibre/matrix adhesion in composites Composites 1992 23 2 27
    • (1992) Composites , vol.23 , pp. 2-27
    • Herrera-Franco, P.J.1    Drzal, L.T.2
  • 70
    • 84958206537 scopus 로고    scopus 로고
    • Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides
    • 150820135704001
    • A. Gandini T. M. Lacerda A. J. F. Carvalho E. Trovatti Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides Chem. Rev. 2015 150820135704001 10.1021/acs.chemrev.5b00264
    • (2015) Chem. Rev.
    • Gandini, A.1    Lacerda, T.M.2    Carvalho, A.J.F.3    Trovatti, E.4
  • 71
    • 84954412854 scopus 로고    scopus 로고
    • Combining metabolic engineering and electrocatalysis: Application to the production of polyamides from sugar
    • M. Suastegui et al., Combining metabolic engineering and electrocatalysis: Application to the production of polyamides from sugar Angew. Chem., Int. Ed. 2016 55 2368 2373
    • (2016) Angew. Chem., Int. Ed. , vol.55 , pp. 2368-2373
    • Suastegui, M.1
  • 72
    • 33847125660 scopus 로고    scopus 로고
    • Fermentative production of lactic acid from biomass: An overview on process developments and future perspectives
    • R. P. John K. M. Nampoothiri A. Pandey Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives Appl. Microbiol. Biotechnol. 2007 74 524 534
    • (2007) Appl. Microbiol. Biotechnol. , vol.74 , pp. 524-534
    • John, R.P.1    Nampoothiri, K.M.2    Pandey, A.3
  • 74
    • 53949091243 scopus 로고    scopus 로고
    • In situ separation of lactic acid from fermentation broth using ion exchange resins
    • S. A. Ataei E. Vasheghani-Farahani In situ separation of lactic acid from fermentation broth using ion exchange resins J. Ind. Microbiol. Biotechnol. 2008 35 1229 1233
    • (2008) J. Ind. Microbiol. Biotechnol. , vol.35 , pp. 1229-1233
    • Ataei, S.A.1    Vasheghani-Farahani, E.2
  • 75
    • 84911065407 scopus 로고    scopus 로고
    • Recent trends in lactic acid biotechnology: A brief review on production to purification
    • T. Ghaffar et al., Recent trends in lactic acid biotechnology: A brief review on production to purification J. Radiat. Res. Appl. Sci. 2014 7 222 229
    • (2014) J. Radiat. Res. Appl. Sci. , vol.7 , pp. 222-229
    • Ghaffar, T.1
  • 77
    • 80052332710 scopus 로고    scopus 로고
    • Styrene exposure and risk of cancer
    • J. Huff P. F. Infante Styrene exposure and risk of cancer Mutagenesis 2011 26 583 584
    • (2011) Mutagenesis , vol.26 , pp. 583-584
    • Huff, J.1    Infante, P.F.2
  • 78
    • 84939993503 scopus 로고    scopus 로고
    • Toward replacement of styrene by bio-based methacrylates in unsaturated polyester resins
    • S. Cousinet et al., Toward replacement of styrene by bio-based methacrylates in unsaturated polyester resins Eur. Polym. J. 2015 67 539 550
    • (2015) Eur. Polym. J. , vol.67 , pp. 539-550
    • Cousinet, S.1
  • 79
    • 0034580375 scopus 로고    scopus 로고
    • Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate
    • S. L. He M. J. Yaszemski A. W. Yasko P. S. Engel A. G. Mikos Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate Biomaterials 2000 21 2389 2394
    • (2000) Biomaterials , vol.21 , pp. 2389-2394
    • He, S.L.1    Yaszemski, M.J.2    Yasko, A.W.3    Engel, P.S.4    Mikos, A.G.5
  • 80
    • 8844280258 scopus 로고
    • Copolymers of methyl methacrylate with cinnamic acid
    • J. C. Bevington F. R. Colley J. R. Ebdon Copolymers of methyl methacrylate with cinnamic acid Polymer 1973 14 409 410
    • (1973) Polymer , vol.14 , pp. 409-410
    • Bevington, J.C.1    Colley, F.R.2    Ebdon, J.R.3
  • 81
    • 84923364596 scopus 로고    scopus 로고
    • Design of low-cost ionic liquids for lignocellulosic biomass pretreatment
    • A. George et al., Design of low-cost ionic liquids for lignocellulosic biomass pretreatment Green Chem. 2015 17 1728 1734
    • (2015) Green Chem. , vol.17 , pp. 1728-1734
    • George, A.1
  • 82
    • 84920841522 scopus 로고    scopus 로고
    • Catalytic Oxidation of Biorefinery Lignin to Value-added Chemicals to Support Sustainable Biofuel Production
    • R. Ma Y. Xu X. Zhang Catalytic Oxidation of Biorefinery Lignin to Value-added Chemicals to Support Sustainable Biofuel Production ChemSusChem 2015 8 24 51
    • (2015) ChemSusChem , vol.8 , pp. 24-51
    • Ma, R.1    Xu, Y.2    Zhang, X.3
  • 83
    • 84863815904 scopus 로고    scopus 로고
    • Bamboo fibre reinforced biocomposites: A review
    • H. P. S. Abdul Khalil et al., Bamboo fibre reinforced biocomposites: A review Mater. Des. 2012 42 353 368
    • (2012) Mater. Des. , vol.42 , pp. 353-368
    • Abdul Khalil, H.P.S.1
  • 84
    • 0033906318 scopus 로고    scopus 로고
    • Extraction of bamboo fibers and their use as reinforcement in polymeric composites
    • A. P. Deshpande M. Bhaskar Rao C. Lakshmana Rao Extraction of bamboo fibers and their use as reinforcement in polymeric composites J. Appl. Polym. Sci. 2000 76 83 92
    • (2000) J. Appl. Polym. Sci. , vol.76 , pp. 83-92
    • Deshpande, A.P.1    Bhaskar Rao, M.2    Lakshmana Rao, C.3
  • 85
    • 29244485140 scopus 로고    scopus 로고
    • Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent
    • S. H. Lee S. Q. Wang Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent Composites, Part A 2006 37 80 91
    • (2006) Composites, Part A , vol.37 , pp. 80-91
    • Lee, S.H.1    Wang, S.Q.2
  • 86
    • 79957805818 scopus 로고    scopus 로고
    • Kenaf fiber reinforced composites: A review
    • H. M. Akil et al., Kenaf fiber reinforced composites: A review Mater. Des. 2011 32 4107 4121
    • (2011) Mater. Des. , vol.32 , pp. 4107-4121
    • Akil, H.M.1
  • 89
    • 0038787609 scopus 로고    scopus 로고
    • Processing of natural-fibre reinforced polymers and the resulting dynamic-mechanical properties
    • B. Wielage T. Lampke H. Utschick F. Soergel Processing of natural-fibre reinforced polymers and the resulting dynamic-mechanical properties J. Mater. Process. Technol. 2003 139 140 146
    • (2003) J. Mater. Process. Technol. , vol.139 , pp. 140-146
    • Wielage, B.1    Lampke, T.2    Utschick, H.3    Soergel, F.4
  • 90
    • 84868285635 scopus 로고    scopus 로고
    • Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: Synthesis and properties
    • B. Braun J. R. Dorgan L. O. Hollingsworth Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties Biomacromolecules 2012 13 2013 2019
    • (2012) Biomacromolecules , vol.13 , pp. 2013-2019
    • Braun, B.1    Dorgan, J.R.2    Hollingsworth, L.O.3
  • 91
    • 84927618296 scopus 로고    scopus 로고
    • Polylactide/cellulose nanocrystal nanocomposites: Efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement
    • S. Spinella et al., Polylactide/cellulose nanocrystal nanocomposites: Efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement Polymer 2015 65 9 17
    • (2015) Polymer , vol.65 , pp. 9-17
    • Spinella, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.