메뉴 건너뛰기




Volumn 81, Issue , 2018, Pages 1548-1568

Recent advances in electricity price forecasting: A review of probabilistic forecasting

Author keywords

Autoregression; Day ahead market; Electricity price forecasting; Neural network; Probabilistic forecast; Reliability; Sharpness

Indexed keywords

COSTS; DECISION MAKING; FORECASTING; POWER MARKETS; REGRESSION ANALYSIS;

EID: 85020812142     PISSN: 13640321     EISSN: 18790690     Source Type: Journal    
DOI: 10.1016/j.rser.2017.05.234     Document Type: Review
Times cited : (435)

References (124)
  • 1
    • 84911944822 scopus 로고    scopus 로고
    • Electricity price forecasting: a review of the state-of-the-art with a look into the future
    • Weron, R., Electricity price forecasting: a review of the state-of-the-art with a look into the future. Int J Forecast 30:4 (2014), 1030–1081.
    • (2014) Int J Forecast , vol.30 , Issue.4 , pp. 1030-1081
    • Weron, R.1
  • 2
    • 33745952342 scopus 로고    scopus 로고
    • 25 years of time series forecasting
    • De Gooijer, J.G., Hyndman, R.J., 25 years of time series forecasting. Int J Forecast 22:3 (2006), 443–473.
    • (2006) Int J Forecast , vol.22 , Issue.3 , pp. 443-473
    • De Gooijer, J.G.1    Hyndman, R.J.2
  • 3
    • 84960172423 scopus 로고    scopus 로고
    • Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond
    • Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., Hyndman, R.J., Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. Int J Forecast 32:3 (2016), 896–913.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 896-913
    • Hong, T.1    Pinson, P.2    Fan, S.3    Zareipour, H.4    Troccoli, A.5    Hyndman, R.J.6
  • 4
    • 84862740823 scopus 로고    scopus 로고
    • Risk constrained self-scheduling of hydro/wind units for short term electricity markets considering intermittency and uncertainty
    • Moghimi Ghadikolaei, H., Ahmadi, A., Aghaei, J., Najafi, M., Risk constrained self-scheduling of hydro/wind units for short term electricity markets considering intermittency and uncertainty. Renew Sustain Energy Rev 16:7 (2012), 4734–4743.
    • (2012) Renew Sustain Energy Rev , vol.16 , Issue.7 , pp. 4734-4743
    • Moghimi Ghadikolaei, H.1    Ahmadi, A.2    Aghaei, J.3    Najafi, M.4
  • 5
    • 84979643065 scopus 로고    scopus 로고
    • Probabilistic electric load forecasting: a tutorial review
    • Hong, T., Fan, S., Probabilistic electric load forecasting: a tutorial review. Int J Forecast 32 (2016), 914–938.
    • (2016) Int J Forecast , vol.32 , pp. 914-938
    • Hong, T.1    Fan, S.2
  • 6
    • 85027705113 scopus 로고    scopus 로고
    • Probabilistic load forecasting via Quantile Regression Averaging on sister forecasts
    • Liu, B., Nowotarski, J., Hong, T., Weron, R., Probabilistic load forecasting via Quantile Regression Averaging on sister forecasts. IEEE Trans Smart Grid 8:2 (2017), 730–737.
    • (2017) IEEE Trans Smart Grid , vol.8 , Issue.2 , pp. 730-737
    • Liu, B.1    Nowotarski, J.2    Hong, T.3    Weron, R.4
  • 7
    • 85035076922 scopus 로고    scopus 로고
    • Forecasting electricity prices: a guide to robust modeling
    • CRC Press [forthcoming]
    • Weron, R., Ziel, F., Forecasting electricity prices: a guide to robust modeling. 2017, CRC Press [forthcoming].
    • (2017)
    • Weron, R.1    Ziel, F.2
  • 8
    • 85057678903 scopus 로고    scopus 로고
    • Time-series forecasting
    • Chapman & Hall/CRC Boca Raton, Florida
    • Chatfield, C., Time-series forecasting. 2000, Chapman & Hall/CRC, Boca Raton, Florida.
    • (2000)
    • Chatfield, C.1
  • 9
    • 33644662742 scopus 로고    scopus 로고
    • Energy price forecasting
    • Amjady, N., Hemmati, M., Energy price forecasting. IEEE Power Energy Mag(March/April), 2006, 20–29.
    • (2006) IEEE Power Energy Mag , Issue.March/April , pp. 20-29
    • Amjady, N.1    Hemmati, M.2
  • 10
    • 84935845022 scopus 로고    scopus 로고
    • A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings
    • Raza, M., Khosravi, A., A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew Sustain Energy Rev 50 (2015), 1352–1372.
    • (2015) Renew Sustain Energy Rev , vol.50 , pp. 1352-1372
    • Raza, M.1    Khosravi, A.2
  • 11
    • 13844320129 scopus 로고    scopus 로고
    • Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method
    • Zhang, L., Luh, P., Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method. IEEE Trans Power Syst 20:1 (2005), 59–66.
    • (2005) IEEE Trans Power Syst , vol.20 , Issue.1 , pp. 59-66
    • Zhang, L.1    Luh, P.2
  • 12
    • 33749506463 scopus 로고    scopus 로고
    • Point and interval forecasting of spot electricity prices: linear vs. non-linear time series models
    • (Article 2)
    • Misiorek, A., Trück, S., Weron, R., Point and interval forecasting of spot electricity prices: linear vs. non-linear time series models. Stud Nonlinear Dyn Econ, 10(3), 2006 (Article 2).
    • (2006) Stud Nonlinear Dyn Econ , vol.10 , Issue.3
    • Misiorek, A.1    Trück, S.2    Weron, R.3
  • 13
    • 80755139776 scopus 로고    scopus 로고
    • Distributional modeling and short-term forecasting of electricity prices by Generalized Additive Models for location, scale and shape
    • Serinaldi, F., Distributional modeling and short-term forecasting of electricity prices by Generalized Additive Models for location, scale and shape. Energy Econ 33 (2011), 1216–1226.
    • (2011) Energy Econ , vol.33 , pp. 1216-1226
    • Serinaldi, F.1
  • 14
    • 85151940117 scopus 로고    scopus 로고
    • The difference between prediction intervals and confidence intervals. Hyndsight Blog (13 March 2013), 〈〉;
    • Hyndman R. The difference between prediction intervals and confidence intervals. Hyndsight Blog (13 March 2013), 〈 http://robjhyndman.com/hyndsight/intervals〉; 2011.
    • (2011)
    • Hyndman, R.1
  • 15
    • 33847399672 scopus 로고    scopus 로고
    • Probabilistic forecasts, calibration and sharpness
    • Gneiting, T., Balabdaoui, F., Raftery, A., Probabilistic forecasts, calibration and sharpness. J R Stat Soc B 69 (2007), 243–268.
    • (2007) J R Stat Soc B , vol.69 , pp. 243-268
    • Gneiting, T.1    Balabdaoui, F.2    Raftery, A.3
  • 16
    • 33947274775 scopus 로고    scopus 로고
    • Strictly proper scoring rules, prediction, and estimation
    • Gneiting, T., Raftery, A., Strictly proper scoring rules, prediction, and estimation. J Am Stat Assoc 102:477 (2007), 359–378.
    • (2007) J Am Stat Assoc , vol.102 , Issue.477 , pp. 359-378
    • Gneiting, T.1    Raftery, A.2
  • 18
    • 34548156412 scopus 로고    scopus 로고
    • Non-parametric probabilistic forecasts of wind power: required properties and evaluation
    • Pinson, P., Nielsen, H., Moller, J., Madsen, H., Kariniotakis, G., Non-parametric probabilistic forecasts of wind power: required properties and evaluation. Wind Energy 10:6 (2007), 497–516.
    • (2007) Wind Energy , vol.10 , Issue.6 , pp. 497-516
    • Pinson, P.1    Nielsen, H.2    Moller, J.3    Madsen, H.4    Kariniotakis, G.5
  • 19
    • 84893275099 scopus 로고    scopus 로고
    • Review on probabilistic forecasting of wind power generation
    • Zhang, Y., Wang, J., Wang, X., Review on probabilistic forecasting of wind power generation. Renew Sustain Energy Rev 32 (2003), 255–270.
    • (2003) Renew Sustain Energy Rev , vol.32 , pp. 255-270
    • Zhang, Y.1    Wang, J.2    Wang, X.3
  • 20
    • 84892960976 scopus 로고    scopus 로고
    • Current status and future advances for wind speed and power forecasting
    • Jung, J., Broadwater, R.P., Current status and future advances for wind speed and power forecasting. Renew Sustain Energy Rev 31 (2014), 762–777.
    • (2014) Renew Sustain Energy Rev , vol.31 , pp. 762-777
    • Jung, J.1    Broadwater, R.P.2
  • 21
    • 84940390709 scopus 로고    scopus 로고
    • Reviews on uncertainty analysis of wind power forecasting
    • Yan, J., Liu, Y., Han, S., Wang, Y., Feng, S., Reviews on uncertainty analysis of wind power forecasting. Renew Sustain Energy Rev 52 (2015), 1322–1330.
    • (2015) Renew Sustain Energy Rev , vol.52 , pp. 1322-1330
    • Yan, J.1    Liu, Y.2    Han, S.3    Wang, Y.4    Feng, S.5
  • 22
    • 84961255702 scopus 로고    scopus 로고
    • Modeling and forecasting electricity loads and prices: a statistical approach
    • John Wiley & Sons Chichester
    • Weron, R., Modeling and forecasting electricity loads and prices: a statistical approach. 2006, John Wiley & Sons, Chichester.
    • (2006)
    • Weron, R.1
  • 23
    • 0037292135 scopus 로고    scopus 로고
    • Energy clearing price prediction and confidence interval estimation with cascaded neural networks
    • Zhang, L., Luh, P., Kasiviswanathan, K., Energy clearing price prediction and confidence interval estimation with cascaded neural networks. IEEE Trans Power Syst 18:1 (2003), 99–105.
    • (2003) IEEE Trans Power Syst , vol.18 , Issue.1 , pp. 99-105
    • Zhang, L.1    Luh, P.2    Kasiviswanathan, K.3
  • 24
    • 55349112144 scopus 로고    scopus 로고
    • Forecasting spot electricity prices: a comparison of parametric and semiparametric time series models
    • Weron, R., Misiorek, A., Forecasting spot electricity prices: a comparison of parametric and semiparametric time series models. Int J Forecast 24 (2008), 744–763.
    • (2008) Int J Forecast , vol.24 , pp. 744-763
    • Weron, R.1    Misiorek, A.2
  • 25
    • 55349142435 scopus 로고    scopus 로고
    • Bayesian forecasting of intraday electricity prices using multivariate skew-elliptical distributions
    • Panagiotelis, A., Smith, M., Bayesian forecasting of intraday electricity prices using multivariate skew-elliptical distributions. Int J Forecast 24 (2008), 710–727.
    • (2008) Int J Forecast , vol.24 , pp. 710-727
    • Panagiotelis, A.1    Smith, M.2
  • 26
    • 33646342226 scopus 로고    scopus 로고
    • Day-ahead price forecasting of electricity markets by a new fuzzy neural network
    • Amjady, N., Day-ahead price forecasting of electricity markets by a new fuzzy neural network. IEEE Trans Power Syst 21:2 (2006), 887–896.
    • (2006) IEEE Trans Power Syst , vol.21 , Issue.2 , pp. 887-896
    • Amjady, N.1
  • 27
    • 34249299065 scopus 로고    scopus 로고
    • Short-term electricity prices forecasting in a competitive market: a neural network approach
    • Catalão, J., Mariano, S., Mendes, V., Ferreira, L., Short-term electricity prices forecasting in a competitive market: a neural network approach. Electr Power Syst Res 77:10 (2007), 1297–1304.
    • (2007) Electr Power Syst Res , vol.77 , Issue.10 , pp. 1297-1304
    • Catalão, J.1    Mariano, S.2    Mendes, V.3    Ferreira, L.4
  • 28
    • 84942194273 scopus 로고    scopus 로고
    • Computing electricity spot price prediction intervals using quantile regression and forecast averaging
    • Nowotarski, J., Weron, R., Computing electricity spot price prediction intervals using quantile regression and forecast averaging. Comput Stat 30:3 (2015), 791–803.
    • (2015) Comput Stat , vol.30 , Issue.3 , pp. 791-803
    • Nowotarski, J.1    Weron, R.2
  • 29
    • 84926669289 scopus 로고    scopus 로고
    • Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging
    • Maciejowska, K., Nowotarski, J., Weron, R., Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging. Int J Forecast 32:3 (2016), 957–965.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 957-965
    • Maciejowska, K.1    Nowotarski, J.2    Weron, R.3
  • 30
    • 43849113102 scopus 로고    scopus 로고
    • A statistical approach for interval forecasting of the electricity price
    • Zhao, J., Dong, Z., Xu, Z., Wong, K., A statistical approach for interval forecasting of the electricity price. IEEE Trans Power Syst 23:2 (2008), 267–276.
    • (2008) IEEE Trans Power Syst , vol.23 , Issue.2 , pp. 267-276
    • Zhao, J.1    Dong, Z.2    Xu, Z.3    Wong, K.4
  • 31
    • 84867984549 scopus 로고    scopus 로고
    • Electricity price forecasting with extreme learning machine and bootstrapping
    • Chen, X., Dong, Z., Meng, K., Xu, Y., Wong, K., Ngan, H., Electricity price forecasting with extreme learning machine and bootstrapping. IEEE Trans Power Syst 27:4 (2012), 2055–2062.
    • (2012) IEEE Trans Power Syst , vol.27 , Issue.4 , pp. 2055-2062
    • Chen, X.1    Dong, Z.2    Meng, K.3    Xu, Y.4    Wong, K.5    Ngan, H.6
  • 32
    • 84892566521 scopus 로고    scopus 로고
    • A hybrid approach for probabilistic forecasting of electricity price
    • Wan, C., Xu, Z., Wang, Y., Dong, Z., Wong, K., A hybrid approach for probabilistic forecasting of electricity price. IEEE Trans Smart Grid 5:1 (2014), 463–470.
    • (2014) IEEE Trans Smart Grid , vol.5 , Issue.1 , pp. 463-470
    • Wan, C.1    Xu, Z.2    Wang, Y.3    Dong, Z.4    Wong, K.5
  • 33
    • 84962439544 scopus 로고    scopus 로고
    • A hybrid model for GEFCom2014 probabilistic electricity price forecasting
    • Maciejowska, K., Nowotarski, J., A hybrid model for GEFCom2014 probabilistic electricity price forecasting. Int J Forecast 32:3 (2016), 1051–1056.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 1051-1056
    • Maciejowska, K.1    Nowotarski, J.2
  • 34
    • 84925105967 scopus 로고    scopus 로고
    • Quantile regression
    • Cambridge University Press
    • Koenker, R.W., Quantile regression. 2005, Cambridge University Press.
    • (2005)
    • Koenker, R.W.1
  • 35
    • 84979538942 scopus 로고    scopus 로고
    • Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting
    • Gaillard, P., Goude, Y., Nedellec, R., Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting. Int J Forecast 32:3 (2016), 1038–1050.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 1038-1050
    • Gaillard, P.1    Goude, Y.2    Nedellec, R.3
  • 36
    • 85052767164 scopus 로고
    • Generalized additive models
    • CRC Press
    • Hastie, T.J., Tibshirani, R.J., Generalized additive models. 43, 1990, CRC Press.
    • (1990) , vol.43
    • Hastie, T.J.1    Tibshirani, R.J.2
  • 37
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R., Regression shrinkage and selection via the lasso. J R Stat Soc B 58 (1996), 267–288.
    • (1996) J R Stat Soc B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 38
    • 77954111515 scopus 로고    scopus 로고
    • Quantile and probability curves without crossing
    • Chernozhukov, V., Fernandez-Val, I., Galichon, A., Quantile and probability curves without crossing. Econometrica 73:3 (2010), 1093–1125.
    • (2010) Econometrica , vol.73 , Issue.3 , pp. 1093-1125
    • Chernozhukov, V.1    Fernandez-Val, I.2    Galichon, A.3
  • 39
    • 84956613397 scopus 로고    scopus 로고
    • Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting
    • Dudek, G., Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting. Int J Forecast 32 (2016), 1057–1060.
    • (2016) Int J Forecast , vol.32 , pp. 1057-1060
    • Dudek, G.1
  • 40
    • 84975733502 scopus 로고    scopus 로고
    • A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014
    • Juban, R., Ohlsson, H., Maasoumy, M., Poirier, L., Kolter, J.Z., A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014. Int J Forecast 32:3 (2016), 1094–1102.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 1094-1102
    • Juban, R.1    Ohlsson, H.2    Maasoumy, M.3    Poirier, L.4    Kolter, J.Z.5
  • 41
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3:1 (2011), 1–122.
    • (2011) Found Trends Mach Learn , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 42
    • 84982975808 scopus 로고    scopus 로고
    • Automated variable selection and shrinkage for day-ahead electricity price forecasting
    • Uniejewski, B., Nowotarski, J., Weron, R., Automated variable selection and shrinkage for day-ahead electricity price forecasting. Energies, 9, 2016, 621.
    • (2016) Energies , vol.9 , pp. 621
    • Uniejewski, B.1    Nowotarski, J.2    Weron, R.3
  • 43
    • 84957638403 scopus 로고    scopus 로고
    • Forecasting electricity spot prices using LASSO: on capturing the autoregressive intraday structure
    • Ziel, F., Forecasting electricity spot prices using LASSO: on capturing the autoregressive intraday structure. IEEE Trans Power Syst 31:6 (2016), 4977–4987.
    • (2016) IEEE Trans Power Syst , vol.31 , Issue.6 , pp. 4977-4987
    • Ziel, F.1
  • 44
    • 77956766629 scopus 로고    scopus 로고
    • An empirical comparison of alternate regime-switching models for electricity spot prices
    • Janczura, J., Weron, R., An empirical comparison of alternate regime-switching models for electricity spot prices. Energy Econ 32:5 (2010), 1059–1073.
    • (2010) Energy Econ , vol.32 , Issue.5 , pp. 1059-1073
    • Janczura, J.1    Weron, R.2
  • 45
    • 33645138858 scopus 로고    scopus 로고
    • Electricity price forecasting with confidence-interval estimation through an extended ARIMA approach
    • Zhou, M., Yan, Z., Ni, Y., Li, G., Nie, Y., Electricity price forecasting with confidence-interval estimation through an extended ARIMA approach. IEEE Proc, Gener Transm Distrib 153:2 (2006), 187–195.
    • (2006) IEEE Proc, Gener Transm Distrib , vol.153 , Issue.2 , pp. 187-195
    • Zhou, M.1    Yan, Z.2    Ni, Y.3    Li, G.4    Nie, Y.5
  • 46
    • 0042745956 scopus 로고    scopus 로고
    • Evaluating interval forecasts
    • Christoffersen, P., Evaluating interval forecasts. Int Econ Rev 39:4 (1998), 841–862.
    • (1998) Int Econ Rev , vol.39 , Issue.4 , pp. 841-862
    • Christoffersen, P.1
  • 48
    • 0035636851 scopus 로고    scopus 로고
    • Testing density forecasts, with applications to risk management
    • Berkowitz, J., Testing density forecasts, with applications to risk management. J Bus Econ Stat 19:4 (2001), 465–474.
    • (2001) J Bus Econ Stat , vol.19 , Issue.4 , pp. 465-474
    • Berkowitz, J.1
  • 49
    • 34247574337 scopus 로고    scopus 로고
    • Comparing density forecast models
    • Bao, Y., Lee, T.-H., Saltoğlu, B., Comparing density forecast models. J Forecast 26:3 (2007), 203–225.
    • (2007) J Forecast , vol.26 , Issue.3 , pp. 203-225
    • Bao, Y.1    Lee, T.-H.2    Saltoğlu, B.3
  • 50
    • 84907398476 scopus 로고    scopus 로고
    • Predictive densities for day-ahead electricity prices using time-adaptive quantile regression
    • Jonsson, T., Pinson, P., Madsen, H., Nielsen, H., Predictive densities for day-ahead electricity prices using time-adaptive quantile regression. Energies 7:9 (2014), 5523–5547.
    • (2014) Energies , vol.7 , Issue.9 , pp. 5523-5547
    • Jonsson, T.1    Pinson, P.2    Madsen, H.3    Nielsen, H.4
  • 51
    • 79958757128 scopus 로고    scopus 로고
    • Seasonal dynamic factor analysis and bootstrap inference: application to electricity market forecasting
    • Alonso, A., Garcia-Martos, C., Rodriguez, J., Sanchez, M., Seasonal dynamic factor analysis and bootstrap inference: application to electricity market forecasting. Technometrics 53 (2011), 137–151.
    • (2011) Technometrics , vol.53 , pp. 137-151
    • Alonso, A.1    Garcia-Martos, C.2    Rodriguez, J.3    Sanchez, M.4
  • 52
    • 84879800748 scopus 로고    scopus 로고
    • Quantifying uncertainties of neural network-based electricity price forecasts
    • Khosravi, A., Nahavandi, S., Creighton, D., Quantifying uncertainties of neural network-based electricity price forecasts. Appl Energy 112 (2013), 120–129.
    • (2013) Appl Energy , vol.112 , pp. 120-129
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 53
    • 84903162870 scopus 로고    scopus 로고
    • Discussion of “Prediction intervals for short-term wind farm generation forecasts” and “Combined nonparametric prediction intervals for wind power generation”
    • Pinson, P., Tastu, J., Discussion of “Prediction intervals for short-term wind farm generation forecasts” and "Combined nonparametric prediction intervals for wind power generation". IEEE Trans Sustain Energy 5:3 (2014), 1019–1020.
    • (2014) IEEE Trans Sustain Energy , vol.5 , Issue.3 , pp. 1019-1020
    • Pinson, P.1    Tastu, J.2
  • 54
    • 84903131391 scopus 로고    scopus 로고
    • Discussion of “Combined nonparametric prediction intervals for wind power generation”
    • Wan, C., Xu, Z., Østergaard, J., Dong, Z.Y., Wong, K.P., Discussion of "Combined nonparametric prediction intervals for wind power generation". IEEE Trans Sustain Energy, 5(3), 2014, 1021.
    • (2014) IEEE Trans Sustain Energy , vol.5 , Issue.3 , pp. 1021
    • Wan, C.1    Xu, Z.2    Østergaard, J.3    Dong, Z.Y.4    Wong, K.P.5
  • 55
    • 84871765209 scopus 로고    scopus 로고
    • A neural network-garch-based method for construction of prediction intervals
    • Khosravi, A., Nahavandi, S., Creighton, D., A neural network-garch-based method for construction of prediction intervals. Electr Power Syst Res 96 (2013), 185–193.
    • (2013) Electr Power Syst Res , vol.96 , pp. 185-193
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 56
    • 84962258029 scopus 로고    scopus 로고
    • Probabilistic electricity price forecasting by improved clonal selection algorithm and wavelet preprocessing, Neural Computing and Applications; 2016 DOI:
    • Rafiei M, Niknam T, Khooban M. Probabilistic electricity price forecasting by improved clonal selection algorithm and wavelet preprocessing, Neural Computing and Applications; 2016 DOI: http://dx.doi.org/10.1007/s00521-016-2279-7.
    • Rafiei, M.1    Niknam, T.2    Khooban, M.3
  • 57
    • 80755140660 scopus 로고    scopus 로고
    • Forecasting electricity prices and their volatilities using Unobserved Components
    • Garcia-Martos, C., Rodriguez, J., Sanchez, M., Forecasting electricity prices and their volatilities using Unobserved Components. Energy Econ 33:6 (2011), 1227–1239.
    • (2011) Energy Econ , vol.33 , Issue.6 , pp. 1227-1239
    • Garcia-Martos, C.1    Rodriguez, J.2    Sanchez, M.3
  • 58
    • 84880916459 scopus 로고    scopus 로고
    • A new recursive dynamic factor analysis for point and interval forecast of electricity price
    • Wu, H.C., Chan, S.C., Tsui, K.M., Hou, Y., A new recursive dynamic factor analysis for point and interval forecast of electricity price. IEEE Trans Power Syst 28:3 (2013), 2352–2365.
    • (2013) IEEE Trans Power Syst , vol.28 , Issue.3 , pp. 2352-2365
    • Wu, H.C.1    Chan, S.C.2    Tsui, K.M.3    Hou, Y.4
  • 59
    • 84941588104 scopus 로고    scopus 로고
    • Probabilistic forecasting of hourly electricity prices in the medium-term using spatial interpolation techniques
    • Bello, A., Reneses, J., Muñoz, A., Delgadillo, A., Probabilistic forecasting of hourly electricity prices in the medium-term using spatial interpolation techniques. Int J Forecast 32:3 (2016), 966–980.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 966-980
    • Bello, A.1    Reneses, J.2    Muñoz, A.3    Delgadillo, A.4
  • 60
    • 84876797885 scopus 로고    scopus 로고
    • Identifying spikes and seasonal components in electricity spot price data: a guide to robust modeling
    • Janczura, J., Trück, S., Weron, R., Wolff, R., Identifying spikes and seasonal components in electricity spot price data: a guide to robust modeling. Energy Econ 38 (2013), 96–110.
    • (2013) Energy Econ , vol.38 , pp. 96-110
    • Janczura, J.1    Trück, S.2    Weron, R.3    Wolff, R.4
  • 61
    • 0013029738 scopus 로고    scopus 로고
    • Market operations in electric power systems: forecasting, scheduling, and risk management
    • Wiley
    • Shahidehpour, M., Yamin, H., Li, Z., Market operations in electric power systems: forecasting, scheduling, and risk management. 2002, Wiley.
    • (2002)
    • Shahidehpour, M.1    Yamin, H.2    Li, Z.3
  • 62
    • 21644481093 scopus 로고    scopus 로고
    • Forecasting electricity prices for a day-ahead pool-based electric energy market
    • Conejo, A.J., Contreras, J., Espínola, R., Plazas, M.A., Forecasting electricity prices for a day-ahead pool-based electric energy market. Int J Forecast 21 (2005), 435–462.
    • (2005) Int J Forecast , vol.21 , pp. 435-462
    • Conejo, A.J.1    Contreras, J.2    Espínola, R.3    Plazas, M.A.4
  • 63
    • 84877341605 scopus 로고    scopus 로고
    • Robust estimation and forecasting of the long-term seasonal component of electricity spot prices
    • Nowotarski, J., Tomczyk, J., Weron, R., Robust estimation and forecasting of the long-term seasonal component of electricity spot prices. Energy Econ 39 (2013), 13–27.
    • (2013) Energy Econ , vol.39 , pp. 13-27
    • Nowotarski, J.1    Tomczyk, J.2    Weron, R.3
  • 64
    • 84856717983 scopus 로고    scopus 로고
    • Forecasting spikes in electricity prices
    • Christensen, T., Hurn, A., Lindsay, K., Forecasting spikes in electricity prices. Int J Forecast 28:2 (2012), 400–411.
    • (2012) Int J Forecast , vol.28 , Issue.2 , pp. 400-411
    • Christensen, T.1    Hurn, A.2    Lindsay, K.3
  • 65
    • 84962808971 scopus 로고    scopus 로고
    • Medium-term probabilistic forecasting of extremely low prices in electricity markets: application to the Spanish case
    • Bello, A., Reneses, J., Muñoz, A., Medium-term probabilistic forecasting of extremely low prices in electricity markets: application to the Spanish case. Energies, 9(3), 2016, 193.
    • (2016) Energies , vol.9 , Issue.3 , pp. 193
    • Bello, A.1    Reneses, J.2    Muñoz, A.3
  • 66
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • Brier, G.W., Verification of forecasts expressed in terms of probability. Mon Weather Rev 78:1 (1950), 1–3.
    • (1950) Mon Weather Rev , vol.78 , Issue.1 , pp. 1-3
    • Brier, G.W.1
  • 68
    • 84988490176 scopus 로고    scopus 로고
    • Electricity price forecasting using sale and purchase curves: the X-model
    • Ziel, F., Steinert, R., Electricity price forecasting using sale and purchase curves: the X-model. Energy Econ 59 (2016), 435–454.
    • (2016) Energy Econ , vol.59 , pp. 435-454
    • Ziel, F.1    Steinert, R.2
  • 69
    • 74149093707 scopus 로고    scopus 로고
    • From probabilistic forecasts to statistical scenarios of short-term wind power production
    • Pinson, P., Madsen, H., Nielsen, H.A., Papaefthymiou, G., Klöckl, B., From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy 12:1 (2009), 51–62.
    • (2009) Wind Energy , vol.12 , Issue.1 , pp. 51-62
    • Pinson, P.1    Madsen, H.2    Nielsen, H.A.3    Papaefthymiou, G.4    Klöckl, B.5
  • 70
    • 77950807303 scopus 로고    scopus 로고
    • Market risk analysis IV: value at risk models
    • Wiley
    • Alexander, C., Market risk analysis IV: value at risk models. 2008, Wiley.
    • (2008)
    • Alexander, C.1
  • 71
    • 84911867104 scopus 로고    scopus 로고
    • An empirical comparison of alternate schemes for combining electricity spot price forecasts
    • Nowotarski, J., Raviv, E., Trück, S., Weron, R., An empirical comparison of alternate schemes for combining electricity spot price forecasts. Energy Econ 46 (2014), 395–412.
    • (2014) Energy Econ , vol.46 , pp. 395-412
    • Nowotarski, J.1    Raviv, E.2    Trück, S.3    Weron, R.4
  • 72
    • 84975693690 scopus 로고    scopus 로고
    • To combine or not to combine? Recent trends in electricity price forecasting
    • Nowotarski, J., Weron, R., To combine or not to combine? Recent trends in electricity price forecasting. ARGO 9 (2016), 7–14.
    • (2016) ARGO , vol.9 , pp. 7-14
    • Nowotarski, J.1    Weron, R.2
  • 73
    • 0003991665 scopus 로고
    • An introduction to the bootstrap
    • Chapman & Hall New York
    • Efron, B., Tibshirani, R.J., An introduction to the bootstrap. 1993, Chapman & Hall, New York.
    • (1993)
    • Efron, B.1    Tibshirani, R.J.2
  • 74
    • 33847387127 scopus 로고    scopus 로고
    • Bootstrap prediction intervals for autoregressive time series
    • Clements, M.P., Kim, J.H., Bootstrap prediction intervals for autoregressive time series. Comput Stat Data Anal 51 (2007), 3580–3594.
    • (2007) Comput Stat Data Anal , vol.51 , pp. 3580-3594
    • Clements, M.P.1    Kim, J.H.2
  • 75
    • 84905674341 scopus 로고    scopus 로고
    • Merging quantile regression with forecast averaging to obtain more accurate interval forecasts of Nord Pool spot prices. In: IEEE Conference Proceedings - EEM14, DOI: ;
    • Nowotarski J, Weron R. Merging quantile regression with forecast averaging to obtain more accurate interval forecasts of Nord Pool spot prices. In: IEEE Conference Proceedings - EEM14, DOI: http://dx.doi.org/10.1109/EEM.2014.6861285; 2014.
    • (2014)
    • Nowotarski, J.1    Weron, R.2
  • 76
    • 84955259754 scopus 로고    scopus 로고
    • Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods
    • Zhang, Y., Liu, K., Qin, L., An, X., Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods. Energy Convers Manag 112 (2016), 208–219.
    • (2016) Energy Convers Manag , vol.112 , pp. 208-219
    • Zhang, Y.1    Liu, K.2    Qin, L.3    An, X.4
  • 77
    • 0001925391 scopus 로고
    • Techniques for verifying the accuracy of risk measurement models
    • Kupiec, P.H., Techniques for verifying the accuracy of risk measurement models. J Deriv 3:2 (1995), 73–84.
    • (1995) J Deriv , vol.3 , Issue.2 , pp. 73-84
    • Kupiec, P.H.1
  • 78
    • 0000582742 scopus 로고
    • Statistical theory: the prequential approach
    • Dawid, A.P., Statistical theory: the prequential approach. J R Stat Soc A 147 (1984), 278–292.
    • (1984) J R Stat Soc A , vol.147 , pp. 278-292
    • Dawid, A.P.1
  • 79
    • 0345388996 scopus 로고    scopus 로고
    • Chi-squared tests of interval and density forecasts and the Bank of England fan charts
    • Wallis, K.F., Chi-squared tests of interval and density forecasts and the Bank of England fan charts. Int J Forecast 19 (2003), 165–175.
    • (2003) Int J Forecast , vol.19 , pp. 165-175
    • Wallis, K.F.1
  • 80
    • 67649342374 scopus 로고    scopus 로고
    • Predictive density evaluation. In: Handbook of Economic Forecasting (Elliott G, Granger CWJ, Timmermann A. eds.), Elsevier.
    • Corradi V, Swanson NR. Predictive density evaluation. In: Handbook of Economic Forecasting (Elliott G, Granger CWJ, Timmermann A. eds.), Elsevier, 2006 pp. 197–284.
    • (2006) , pp. 197-284
    • Corradi, V.1    Swanson, N.R.2
  • 81
    • 0042156974 scopus 로고    scopus 로고
    • Evaluating interval forecasts of high-frequency financial data
    • Clements, M.P., Taylor, T., Evaluating interval forecasts of high-frequency financial data. J Appl Econ 18:4 (2003), 445–456.
    • (2003) J Appl Econ , vol.18 , Issue.4 , pp. 445-456
    • Clements, M.P.1    Taylor, T.2
  • 82
    • 83455177636 scopus 로고    scopus 로고
    • Evaluating value-at-risk models with desk-level data
    • Berkowitz, J., Christoffersen, P., Pelletier, D., Evaluating value-at-risk models with desk-level data. Manag Sci 57:12 (2011), 2213–2227.
    • (2011) Manag Sci , vol.57 , Issue.12 , pp. 2213-2227
    • Berkowitz, J.1    Christoffersen, P.2    Pelletier, D.3
  • 83
    • 30144441447 scopus 로고    scopus 로고
    • Backtesting value-at-risk: a duration-based approach
    • Christoffersen, P., Pelletier, D., Backtesting value-at-risk: a duration-based approach. J Financ Econ 2:1 (2004), 84–108.
    • (2004) J Financ Econ , vol.2 , Issue.1 , pp. 84-108
    • Christoffersen, P.1    Pelletier, D.2
  • 84
    • 84862008809 scopus 로고    scopus 로고
    • A new class of independence tests for interval forecast evaluation
    • Santos, A.P.P., Alves, M.F., A new class of independence tests for interval forecast evaluation. Comput Stat Data Anal 56:11 (2012), 3366–3380.
    • (2012) Comput Stat Data Anal , vol.56 , Issue.11 , pp. 3366-3380
    • Santos, A.P.P.1    Alves, M.F.2
  • 85
    • 4444289240 scopus 로고    scopus 로고
    • CAViaR: conditional autoregressive value at risk by regression quantiles
    • Engle, R.F., Manganelli, S., CAViaR: conditional autoregressive value at risk by regression quantiles. J Bus Econ Stat 22:4 (2004), 367–381.
    • (2004) J Bus Econ Stat , vol.22 , Issue.4 , pp. 367-381
    • Engle, R.F.1    Manganelli, S.2
  • 86
    • 78449251719 scopus 로고    scopus 로고
    • Evaluating Value-at-Risk models via quantile regression
    • Gaglianone, W., Lima, L., Linton, O., Smith, D., Evaluating Value-at-Risk models via quantile regression. J Bus Econ Stat 29:1 (2011), 150–160.
    • (2011) J Bus Econ Stat , vol.29 , Issue.1 , pp. 150-160
    • Gaglianone, W.1    Lima, L.2    Linton, O.3    Smith, D.4
  • 87
    • 0348242861 scopus 로고
    • Prediction with a generalized cost of error function
    • Granger, C.W.J., Prediction with a generalized cost of error function. Oper Res Q 20 (1969), 199–207.
    • (1969) Oper Res Q , vol.20 , pp. 199-207
    • Granger, C.W.J.1
  • 88
    • 78650940664 scopus 로고    scopus 로고
    • Quantiles as optimal point forecasts
    • Gneiting, T., Quantiles as optimal point forecasts. Int J Forecast 27:2 (2011), 197–207.
    • (2011) Int J Forecast , vol.27 , Issue.2 , pp. 197-207
    • Gneiting, T.1
  • 89
    • 84903128295 scopus 로고
    • A decision-theoretic approach to interval estimation
    • Winkler, R.L., A decision-theoretic approach to interval estimation. J Am Stat Assoc 67:337 (1972), 187–191.
    • (1972) J Am Stat Assoc , vol.67 , Issue.337 , pp. 187-191
    • Winkler, R.L.1
  • 90
    • 68249136965 scopus 로고
    • Comparing predictive accuracy
    • Diebold, F.X., Mariano, R.S., Comparing predictive accuracy. J Bus Econ Stat 13 (1995), 253–263.
    • (1995) J Bus Econ Stat , vol.13 , pp. 253-263
    • Diebold, F.X.1    Mariano, R.S.2
  • 91
    • 84921902331 scopus 로고    scopus 로고
    • Comparing predictive accuracy, twenty years later: a personal perspective on the use and abuse of Diebold-Mariano tests
    • Diebold, F.X., Comparing predictive accuracy, twenty years later: a personal perspective on the use and abuse of Diebold-Mariano tests. J Bus Econ Stat 33:1 (2015), 1–9.
    • (2015) J Bus Econ Stat , vol.33 , Issue.1 , pp. 1-9
    • Diebold, F.X.1
  • 94
    • 0016961866 scopus 로고
    • Scoring rules for continuous probability distributions
    • Matheson, J.E., Winkler, R.L., Scoring rules for continuous probability distributions. Manag Sci 22 (1976), 1087–1096.
    • (1976) Manag Sci , vol.22 , pp. 1087-1096
    • Matheson, J.E.1    Winkler, R.L.2
  • 95
    • 0000558731 scopus 로고
    • Rational decisions
    • Good, I.J., Rational decisions. J R Stat Soc B 14 (1952), 107–114.
    • (1952) J R Stat Soc B , vol.14 , pp. 107-114
    • Good, I.J.1
  • 96
    • 77958487600 scopus 로고    scopus 로고
    • Conditional prediction intervals of wind power generation
    • Pinson, P., Kariniotakis, G., Conditional prediction intervals of wind power generation. IEEE Trans Power Syst 25:4 (2010), 1845–1856.
    • (2010) IEEE Trans Power Syst , vol.25 , Issue.4 , pp. 1845-1856
    • Pinson, P.1    Kariniotakis, G.2
  • 97
    • 0000588489 scopus 로고    scopus 로고
    • Evaluating volatility and interval forecasts
    • Taylor, J.W., Evaluating volatility and interval forecasts. J Forecast 18 (1999), 111–128.
    • (1999) J Forecast , vol.18 , pp. 111-128
    • Taylor, J.W.1
  • 98
    • 85028936777 scopus 로고    scopus 로고
    • Variance stabilizing transformations for electricity spot price forecasting
    • [Submitted for publication]
    • Uniejewski, B., Weron, R., Ziel, F., Variance stabilizing transformations for electricity spot price forecasting. IEEE Trans Power Syst, 2017 [Submitted for publication].
    • (2017) IEEE Trans Power Syst
    • Uniejewski, B.1    Weron, R.2    Ziel, F.3
  • 99
  • 100
    • 84905726976 scopus 로고    scopus 로고
    • Integrating renewables in electricity markets: operational problems
    • Springer
    • Morales, J.M., Conejo, A.J., Madsen, H., Pinson, P., Zugno, M., Integrating renewables in electricity markets: operational problems. 2014, Springer.
    • (2014)
    • Morales, J.M.1    Conejo, A.J.2    Madsen, H.3    Pinson, P.4    Zugno, M.5
  • 101
    • 84899566603 scopus 로고    scopus 로고
    • Probabilistic forecasting of wind power generation using extreme learning machine
    • Wan, C., Xu, Z., Pinson, P., Dong, Z., Wong, K., Probabilistic forecasting of wind power generation using extreme learning machine. IEEE Trans Power Syst 29:3 (2014), 1033–1044.
    • (2014) IEEE Trans Power Syst , vol.29 , Issue.3 , pp. 1033-1044
    • Wan, C.1    Xu, Z.2    Pinson, P.3    Dong, Z.4    Wong, K.5
  • 102
    • 84903179799 scopus 로고    scopus 로고
    • Closure to the discussion of “Prediction intervals for short-term wind farm generation forecasts” and “Combined nonparametric prediction intervals for wind power generation” and the discussion of “Combined nonparametric prediction intervals for wind power generation”
    • Khosravi, A., Nahavandi, S., Closure to the discussion of “Prediction intervals for short-term wind farm generation forecasts” and “Combined nonparametric prediction intervals for wind power generation” and the discussion of "Combined nonparametric prediction intervals for wind power generation". IEEE Trans Sustain Energy 5:3 (2014), 1022–1023.
    • (2014) IEEE Trans Sustain Energy , vol.5 , Issue.3 , pp. 1022-1023
    • Khosravi, A.1    Nahavandi, S.2
  • 103
    • 84966936574 scopus 로고    scopus 로고
    • Economic forecasting
    • Princeton University Press
    • Elliott, G., Timmermann, A., Economic forecasting. 2016, Princeton University Press.
    • (2016)
    • Elliott, G.1    Timmermann, A.2
  • 104
    • 0003649910 scopus 로고
    • Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis
    • Cambridge University Press
    • Morgan, M.G., Henrion, M., Small, M., Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis. 1990, Cambridge University Press.
    • (1990)
    • Morgan, M.G.1    Henrion, M.2    Small, M.3
  • 105
    • 85152007526 scopus 로고    scopus 로고
    • Estimation and application of fully parametric multifactor quantile regression with dynamic coefficients. University of St. Gallen, School of Finance Research Paper No. 2016/07. Available at SSRN: 〈〉.
    • Paraschiv F, Bunn D.W, Westgaard S. Estimation and application of fully parametric multifactor quantile regression with dynamic coefficients, 2016. University of St. Gallen, School of Finance Research Paper No. 2016/07. Available at SSRN: 〈 https://ssrn.com/abstract=2741692〉.
    • (2016)
    • Paraschiv, F.1    Bunn, D.W.2    Westgaard, S.3
  • 106
    • 85151968066 scopus 로고
    • A method to estimate the continuous ranked probability score. In: Proceedings of the 9th conference on probability and statistics in atmospheric sciences, Virginia Beach, VA, 206–213;
    • Unger D.A. A method to estimate the continuous ranked probability score. In: Proceedings of the 9th conference on probability and statistics in atmospheric sciences, Virginia Beach, VA, 206–213; 1985.
    • (1985)
    • Unger, D.A.1
  • 107
    • 0034292468 scopus 로고    scopus 로고
    • Decomposition of the continuous ranked probability score for ensemble prediction systems
    • Hersbach, H., Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather Forecast 15 (2000), 559–570.
    • (2000) Weather Forecast , vol.15 , pp. 559-570
    • Hersbach, H.1
  • 108
    • 84960193121 scopus 로고    scopus 로고
    • Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression
    • Taieb, S.B., Huser, R., Hyndman, R.J., Genton, M.G., Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression. IEEE Trans Smart Grid 7:5 (2016), 2448–2455.
    • (2016) IEEE Trans Smart Grid , vol.7 , Issue.5 , pp. 2448-2455
    • Taieb, S.B.1    Huser, R.2    Hyndman, R.J.3    Genton, M.G.4
  • 109
    • 0142104187 scopus 로고    scopus 로고
    • Forecasting electricity spot-prices using linear univariate time-series models
    • Cuaresma, J.C., Hlouskova, J., Kossmeier, S., Obersteiner, M., Forecasting electricity spot-prices using linear univariate time-series models. Appl Energy 77:1 (2004), 87–106.
    • (2004) Appl Energy , vol.77 , Issue.1 , pp. 87-106
    • Cuaresma, J.C.1    Hlouskova, J.2    Kossmeier, S.3    Obersteiner, M.4
  • 110
    • 84867714048 scopus 로고    scopus 로고
    • Forecasting Italian electricity zonal prices with exogenous variables
    • Gianfreda, A., Grossi, L., Forecasting Italian electricity zonal prices with exogenous variables. Energy Econ 34:6 (2012), 2228–2239.
    • (2012) Energy Econ , vol.34 , Issue.6 , pp. 2228-2239
    • Gianfreda, A.1    Grossi, L.2
  • 111
    • 84870728128 scopus 로고    scopus 로고
    • Day-ahead electricity price forecasting using a hybrid principal component analysis network
    • Hong, Y.-Y., Wu, C.-P., Day-ahead electricity price forecasting using a hybrid principal component analysis network. Energies 5:11 (2012), 4711–4725.
    • (2012) Energies , vol.5 , Issue.11 , pp. 4711-4725
    • Hong, Y.-Y.1    Wu, C.-P.2
  • 112
    • 84872411098 scopus 로고    scopus 로고
    • Combining day-ahead forecasts for British electricity prices
    • Bordignon, S., Bunn, D.W., Lisi, F., Nan, F., Combining day-ahead forecasts for British electricity prices. Energy Econ 35 (2013), 88–103.
    • (2013) Energy Econ , vol.35 , pp. 88-103
    • Bordignon, S.1    Bunn, D.W.2    Lisi, F.3    Nan, F.4
  • 113
    • 84942192717 scopus 로고    scopus 로고
    • Forecasting of daily electricity prices with factor models: utilizing intra-day and inter-zone relationships
    • Maciejowska, K., Weron, R., Forecasting of daily electricity prices with factor models: utilizing intra-day and inter-zone relationships. Comput Stat 30:3 (2015), 805–819.
    • (2015) Comput Stat , vol.30 , Issue.3 , pp. 805-819
    • Maciejowska, K.1    Weron, R.2
  • 114
    • 84928248553 scopus 로고    scopus 로고
    • Short- and mid-term forecasting of baseload electricity prices in the UK: the impact of intra-day price relationships and market fundamentals
    • Maciejowska, K., Weron, R., Short- and mid-term forecasting of baseload electricity prices in the UK: the impact of intra-day price relationships and market fundamentals. IEEE Trans Power Syst 31:2 (2016), 994–1005.
    • (2016) IEEE Trans Power Syst , vol.31 , Issue.2 , pp. 994-1005
    • Maciejowska, K.1    Weron, R.2
  • 115
    • 84892622679 scopus 로고    scopus 로고
    • Probabilistic forecasts of wind power generation accounting for geographically dispersed information
    • Tastu, J., Pinson, P., Trombe, P.-J., Madsen, H., Probabilistic forecasts of wind power generation accounting for geographically dispersed information. IEEE Trans Smart Grid 5:1 (2014), 480–489.
    • (2014) IEEE Trans Smart Grid , vol.5 , Issue.1 , pp. 480-489
    • Tastu, J.1    Pinson, P.2    Trombe, P.-J.3    Madsen, H.4
  • 116
    • 84959486200 scopus 로고    scopus 로고
    • Mixture EMOS model for calibrating ensemble forecasts of wind speed
    • Baran, S., Lerch, S., Mixture EMOS model for calibrating ensemble forecasts of wind speed. Environmetrics 27:2 (2016), 116–130.
    • (2016) Environmetrics , vol.27 , Issue.2 , pp. 116-130
    • Baran, S.1    Lerch, S.2
  • 117
    • 84975782933 scopus 로고    scopus 로고
    • On the importance of the long-term seasonal component in day-ahead electricity price forecasting
    • Nowotarski, J., Weron, R., On the importance of the long-term seasonal component in day-ahead electricity price forecasting. Energy Econ 57 (2016), 228–235.
    • (2016) Energy Econ , vol.57 , pp. 228-235
    • Nowotarski, J.1    Weron, R.2
  • 118
    • 55349123929 scopus 로고    scopus 로고
    • Forecasting electricity prices: the impact of fundamentals and time-varying coefficients
    • Karakatsani, N., Bunn, D., Forecasting electricity prices: the impact of fundamentals and time-varying coefficients. Int J Forecast 24 (2008), 764–785.
    • (2008) Int J Forecast , vol.24 , pp. 764-785
    • Karakatsani, N.1    Bunn, D.2
  • 119
    • 84880923235 scopus 로고    scopus 로고
    • Power spot price models with negative prices
    • Schneider, S., Power spot price models with negative prices. J Energy Mark 4:4 (2011), 77–102.
    • (2011) J Energy Mark , vol.4 , Issue.4 , pp. 77-102
    • Schneider, S.1
  • 120
    • 84937697437 scopus 로고    scopus 로고
    • A note on the normalization of Spanish electricity spot prices
    • Diaz, G., Planas, E., A note on the normalization of Spanish electricity spot prices. IEEE Trans Power Syst 31:3 (2016), 2499–2500.
    • (2016) IEEE Trans Power Syst , vol.31 , Issue.3 , pp. 2499-2500
    • Diaz, G.1    Planas, E.2
  • 122
    • 84982906746 scopus 로고    scopus 로고
    • Short-term forecasting of electricity prices: do we need a different model for each hour?
    • Misiorek, A., Short-term forecasting of electricity prices: do we need a different model for each hour?. Medium Économ Toepass 16:2 (2008), 8–13.
    • (2008) Medium Économ Toepass , vol.16 , Issue.2 , pp. 8-13
    • Misiorek, A.1
  • 123
    • 84865579794 scopus 로고    scopus 로고
    • Forecasting Nord Pool day-ahead prices with an autoregressive model
    • Kristiansen, T., Forecasting Nord Pool day-ahead prices with an autoregressive model. Energy Policy 49 (2012), 328–332.
    • (2012) Energy Policy , vol.49 , pp. 328-332
    • Kristiansen, T.1
  • 124
    • 84945120756 scopus 로고    scopus 로고
    • Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks
    • Keles, D., Scelle, J., Paraschiv, F., Fichtner, W., Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Appl Energy 162 (2016), 218–230.
    • (2016) Appl Energy , vol.162 , pp. 218-230
    • Keles, D.1    Scelle, J.2    Paraschiv, F.3    Fichtner, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.