메뉴 건너뛰기




Volumn 28, Issue 12, 2017, Pages 3889-3901

Probabilistic electricity price forecasting by improved clonal selection algorithm and wavelet preprocessing

Author keywords

Autocorrelation function; Improved clonal selection algorithm; Prediction intervals; Probabilistic forecasting; Wavelet preprocess

Indexed keywords

ALGORITHMS; AUTOCORRELATION; COMMERCE; COSTS; DECISION MAKING; FORECASTING; LEARNING SYSTEMS;

EID: 84962258029     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-016-2279-7     Document Type: Article
Times cited : (29)

References (28)
  • 3
    • 18944389569 scopus 로고    scopus 로고
    • Day-ahead electricity price forecasting using the wavelet transform and ARIMA models
    • Conejo AJ, Plazas MA, Espinola R, Molina AB (2005) Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Trans Power Syst 20:1035–1042
    • (2005) IEEE Trans Power Syst , vol.20 , pp. 1035-1042
    • Conejo, A.J.1    Plazas, M.A.2    Espinola, R.3    Molina, A.B.4
  • 5
    • 84940055627 scopus 로고    scopus 로고
    • Electricity price forecasting using a new data fusion algorithm
    • Darudi A, Bashari M, Javidi MH (2015) Electricity price forecasting using a new data fusion algorithm. Gener Transm Distrib IET 9:1382–1390
    • (2015) Gener Transm Distrib IET , vol.9 , pp. 1382-1390
    • Darudi, A.1    Bashari, M.2    Javidi, M.H.3
  • 6
    • 33645138858 scopus 로고    scopus 로고
    • Electricity price forecasting with confidence-interval estimation through an extended ARIMA approach
    • Zhou M, Yan Z, Ni Y, Li G, Nie Y (2006) Electricity price forecasting with confidence-interval estimation through an extended ARIMA approach. IEE Proc Gener Transm Distrib 153:187–195
    • (2006) IEE Proc Gener Transm Distrib , vol.153 , pp. 187-195
    • Zhou, M.1    Yan, Z.2    Ni, Y.3    Li, G.4    Nie, Y.5
  • 7
    • 13844320129 scopus 로고    scopus 로고
    • Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method
    • Zhang L, Luh PB (2005) Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method. IEEE Trans Power Syst 20:59–66
    • (2005) IEEE Trans Power Syst , vol.20 , pp. 59-66
    • Zhang, L.1    Luh, P.B.2
  • 8
    • 43849113102 scopus 로고    scopus 로고
    • A statistical approach for interval forecasting of the electricity price
    • Zhao JH, Dong ZY, Xu Z, Wong KP (2008) A statistical approach for interval forecasting of the electricity price. IEEE Trans Power Syst 23:267–276
    • (2008) IEEE Trans Power Syst , vol.23 , pp. 267-276
    • Zhao, J.H.1    Dong, Z.Y.2    Xu, Z.3    Wong, K.P.4
  • 9
    • 84892566521 scopus 로고    scopus 로고
    • A hybrid approach for probabilistic forecasting of electricity price
    • Wan C, Xu Z, Wang Y, Dong ZY, Wong KP (2014) A hybrid approach for probabilistic forecasting of electricity price. IEEE Trans Smart Grid 5:463–470
    • (2014) IEEE Trans Smart Grid , vol.5 , pp. 463-470
    • Wan, C.1    Xu, Z.2    Wang, Y.3    Dong, Z.Y.4    Wong, K.P.5
  • 10
    • 84880916459 scopus 로고    scopus 로고
    • A new recursive dynamic factor analysis for point and interval forecast of electricity price
    • Wu H, Chan S, Tsui K, Hou Y (2013) A new recursive dynamic factor analysis for point and interval forecast of electricity price. IEEE Trans Power Syst 28:2352–2365
    • (2013) IEEE Trans Power Syst , vol.28 , pp. 2352-2365
    • Wu, H.1    Chan, S.2    Tsui, K.3    Hou, Y.4
  • 11
    • 84908431712 scopus 로고    scopus 로고
    • Probabilistic electricity price forecasting with variational heteroscedastic Gaussian process and active learning
    • Kou P, Liang D, Gao L, Lou J (2015) Probabilistic electricity price forecasting with variational heteroscedastic Gaussian process and active learning. Energy Convers Manag 89:298–308
    • (2015) Energy Convers Manag , vol.89 , pp. 298-308
    • Kou, P.1    Liang, D.2    Gao, L.3    Lou, J.4
  • 13
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 14
    • 33646342226 scopus 로고    scopus 로고
    • Day-ahead price forecasting of electricity markets by a new fuzzy neural network
    • Amjady N (2006) Day-ahead price forecasting of electricity markets by a new fuzzy neural network. IEEE Trans Power Syst 21:887–896
    • (2006) IEEE Trans Power Syst , vol.21 , pp. 887-896
    • Amjady, N.1
  • 15
    • 0036613006 scopus 로고    scopus 로고
    • Learning and optimization using the clonal selection principle
    • De Castro LN, Von Zuben FJ (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput 6:239–251
    • (2002) IEEE Trans Evol Comput , vol.6 , pp. 239-251
    • De Castro, L.N.1    Von Zuben, F.J.2
  • 16
    • 33646595041 scopus 로고    scopus 로고
    • Application of an immune algorithm to the short-term unit commitment problem in power system operation
    • Liao G-C (2006) Application of an immune algorithm to the short-term unit commitment problem in power system operation. IEE Proc Gener Transm Distrib 153:309–320
    • (2006) IEE Proc Gener Transm Distrib , vol.153 , pp. 309-320
    • Liao, G.-C.1
  • 17
    • 84908425965 scopus 로고    scopus 로고
    • Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
    • Chitsaz H, Amjady N, Zareipour H (2015) Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm. Energy Convers Manag 89:588–598
    • (2015) Energy Convers Manag , vol.89 , pp. 588-598
    • Chitsaz, H.1    Amjady, N.2    Zareipour, H.3
  • 18
    • 0029322622 scopus 로고
    • An introduction to wavelets
    • Graps A (1995) An introduction to wavelets. IEEE Comput Sci Eng 2:50–61
    • (1995) IEEE Comput Sci Eng , vol.2 , pp. 50-61
    • Graps, A.1
  • 19
    • 77955661653 scopus 로고    scopus 로고
    • Wavelet transform application to the compression of images
    • Boix M, Canto B (2010) Wavelet transform application to the compression of images. Math Comput Model 52:1265–1270
    • (2010) Math Comput Model , vol.52 , pp. 1265-1270
    • Boix, M.1    Canto, B.2
  • 20
    • 34548855348 scopus 로고    scopus 로고
    • A wavelet-fuzzy combined approach for classification and location of transmission line faults
    • Reddy MJ, Mohanta DK (2007) A wavelet-fuzzy combined approach for classification and location of transmission line faults. Int J Electr Power Energy Syst 29:669–678
    • (2007) Int J Electr Power Energy Syst , vol.29 , pp. 669-678
    • Reddy, M.J.1    Mohanta, D.K.2
  • 21
    • 84862642100 scopus 로고    scopus 로고
    • Comparative study of different wavelets for hydrologic forecasting
    • Maheswaran R, Khosa R (2012) Comparative study of different wavelets for hydrologic forecasting. Comput Geosci 46:284–295
    • (2012) Comput Geosci , vol.46 , pp. 284-295
    • Maheswaran, R.1    Khosa, R.2
  • 22
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G-B, Chen L, Siew C-K (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17:879–892
    • (2006) IEEE Trans Neural Netw , vol.17 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 24
    • 0003410290 scopus 로고
    • 2, Princeton University Press, Princeton
    • Hamilton JD (1994) Time series analysis, vol 2. Princeton University Press, Princeton
    • (1994) Time series analysis
    • Hamilton, J.D.1
  • 25
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Efron B (1979) Bootstrap methods: another look at the jackknife. The Annals of Statistics 1–26
    • (1979) The Annals of Statistics , pp. 1-26
    • Efron, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.