메뉴 건너뛰기




Volumn 96, Issue , 2013, Pages 185-193

A neural network-GARCH-based method for construction of Prediction Intervals

Author keywords

Bootstrap; Electricity price; GARCH; Neural networks; Prediction intervals

Indexed keywords

BOOTSTRAP; COVERAGE PROBABILITIES; ELECTRICITY PRICES; ENERGY MARKETS; FORECASTING ELECTRICITY; GARCH; GARCH MODELS; GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY; HIGH QUALITY; HYBRID METHOD; MAXIMUM LIKELIHOOD ESTIMATION METHOD; MOVING BLOCK; NARROW WIDTH; NEW YORK; PREDICTION INTERVAL;

EID: 84871765209     PISSN: 03787796     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.epsr.2012.11.007     Document Type: Article
Times cited : (82)

References (48)
  • 1
    • 84856062565 scopus 로고    scopus 로고
    • Forecasting hourly electricity prices using ARMAX-GARCH models: An application to MISO hubs
    • E. Hickey, D.G. Loomis, and H. Mohammadi Forecasting hourly electricity prices using ARMAX-GARCH models: an application to MISO hubs Energy Economics 34 1 2012 307 315
    • (2012) Energy Economics , vol.34 , Issue.1 , pp. 307-315
    • Hickey, E.1    Loomis, D.G.2    Mohammadi, H.3
  • 2
    • 55349142435 scopus 로고    scopus 로고
    • Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions
    • A. Panagiotelis, and M. Smith Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions International Journal of Forecasting 24 4 2008 710 727
    • (2008) International Journal of Forecasting , vol.24 , Issue.4 , pp. 710-727
    • Panagiotelis, A.1    Smith, M.2
  • 3
    • 33947240745 scopus 로고    scopus 로고
    • Electricity prices forecasting by automatic dynamic harmonic regression models
    • DOI 10.1016/j.enconman.2006.11.004, PII S0196890406003475
    • D.J. Pedregal, and J.R. Trapero Electricity prices forecasting by automatic dynamic harmonic regression models Energy Conversion and Management 48 5 2007 1710 1719 (Pubitemid 46436202)
    • (2007) Energy Conversion and Management , vol.48 , Issue.5 , pp. 1710-1719
    • Pedregal, D.J.1    Trapero, J.R.2
  • 4
    • 0036577622 scopus 로고    scopus 로고
    • Forecasting next-day electricity prices by time series models
    • DOI 10.1109/TPWRS.2002.1007902, PII S088589500203835X
    • F. Nogales, J. Contreras, A. Conejo, and R. Espinola Forecasting next-day electricity prices by time series models IEEE Transactions on Power Systems 17 2 2002 342 348 (Pubitemid 34741696)
    • (2002) IEEE Transactions on Power Systems , vol.17 , Issue.2 , pp. 342-348
    • Nogales, F.J.1    Contreras, J.2    Conejo, A.J.3    Espinola, R.4
  • 5
    • 33847615258 scopus 로고    scopus 로고
    • Application of public-domain market information to forecast Ontario's wholesale electricity prices
    • DOI 10.1109/TPWRS.2006.883688
    • H. Zareipour, C. Canizares, K. Bhattacharya, and J. Thomson Application of public-domain market information to forecast Ontario's wholesale electricity prices IEEE Transactions on Power Systems 21 4 2006 1707 1717 (Pubitemid 46357771)
    • (2006) IEEE Transactions on Power Systems , vol.21 , Issue.4 , pp. 1707-1717
    • Zareipour, H.1    Canzares, C.A.2    Bhattacharya, K.3    Thomson, J.4
  • 6
    • 52049123294 scopus 로고    scopus 로고
    • Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models
    • N. Bowden, and J.E. Payne Short term forecasting of electricity prices for MISO hubs: evidence from ARIMA-EGARCH models Energy Economics 30 6 2008 3186 3197
    • (2008) Energy Economics , vol.30 , Issue.6 , pp. 3186-3197
    • Bowden, N.1    Payne, J.E.2
  • 7
    • 42749087480 scopus 로고    scopus 로고
    • Day-ahead price forecasting in restructured power systems using artificial neural networks
    • V. Vahidinasab, S. Jadid, and A. Kazemi Day-ahead price forecasting in restructured power systems using artificial neural networks Electric Power Systems Research 78 8 2008 1332 1342
    • (2008) Electric Power Systems Research , vol.78 , Issue.8 , pp. 1332-1342
    • Vahidinasab, V.1    Jadid, S.2    Kazemi, A.3
  • 8
    • 77958074263 scopus 로고    scopus 로고
    • A RBF neural network model with GARCH errors: Application to electricity price forecasting
    • L.d.S. Coelho, and A.A. Santos A RBF neural network model with GARCH errors: application to electricity price forecasting Electric Power Systems Research 81 1 2011 74 83
    • (2011) Electric Power Systems Research , vol.81 , Issue.1 , pp. 74-83
    • Coelho D. L, S.1    Santos, A.A.2
  • 9
    • 12244280854 scopus 로고    scopus 로고
    • A neuro-fuzzy price forecasting approach in deregulated electricity markets
    • DOI 10.1016/j.epsr.2004.07.002, PII S0378779604001877
    • Y.-Y. Hong, and C.-F. Lee A neuro-fuzzy price forecasting approach in deregulated electricity markets Electric Power Systems Research 73 2 2005 151 157 (Pubitemid 40114238)
    • (2005) Electric Power Systems Research , vol.73 , Issue.2 , pp. 151-157
    • Hong, Y.-Y.1    Lee, C.-F.2
  • 10
    • 84879720622 scopus 로고    scopus 로고
    • Next-day electricity-price forecasting using a hybrid network
    • S. Fan, C. Mao, and L. Chen Next-day electricity-price forecasting using a hybrid network IET Generation, Transmission & Distribution 1 1 2007 176 182
    • (2007) IET Generation, Transmission & Distribution , vol.1 , Issue.1 , pp. 176-182
    • Fan, S.1    Mao, C.2    Chen, L.3
  • 11
    • 43849113102 scopus 로고    scopus 로고
    • A statistical approach for interval forecasting of the electricity price
    • DOI 10.1109/TPWRS.2008.919309
    • J.H. Zhao, Z.Y. Dong, Z. Xu, and K.P. Wong A statistical approach for interval forecasting of the electricity price IEEE Transactions on Power Systems 23 2 2008 267 276 (Pubitemid 351695804)
    • (2008) IEEE Transactions on Power Systems , vol.23 , Issue.2 , pp. 267-276
    • Zhao, J.H.1    Dong, Z.Y.2    Xu, Z.3    Wong, K.P.4
  • 12
    • 79151479782 scopus 로고    scopus 로고
    • Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting
    • J. Catalao, H. Pousinho, and V. Mendes Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting IEEE Transactions on Power Systems 26 1 2011 137 144
    • (2011) IEEE Transactions on Power Systems , vol.26 , Issue.1 , pp. 137-144
    • Catalao, J.1    Pousinho, H.2    Mendes, V.3
  • 13
    • 36148991101 scopus 로고    scopus 로고
    • Forecasting next-day price of electricity in the Spanish energy market using artificial neural networks
    • DOI 10.1016/j.engappai.2007.02.001, PII S0952197607000097
    • R. Pino, J. Parreno, A. Gomez, and P. Priore Forecasting next-day price of electricity in the Spanish energy market using artificial neural networks Engineering Applications of Artificial Intelligence 21 1 2008 53 62 (Pubitemid 350117450)
    • (2008) Engineering Applications of Artificial Intelligence , vol.21 , Issue.1 , pp. 53-62
    • Pino, R.1    Parreno, J.2    Gomez, A.3    Priore, P.4
  • 14
    • 21644481093 scopus 로고    scopus 로고
    • Forecasting electricity prices for a day-ahead pool-based electric energy market
    • DOI 10.1016/j.ijforecast.2004.12.005, PII S0169207004001311
    • A.J. Conejo, J. Contreras, R. Espínola, and M.A. Plazas Forecasting electricity prices for a day-ahead pool-based electric energy market International Journal of Forecasting 21 3 2005 435 462 (Pubitemid 40935945)
    • (2005) International Journal of Forecasting , vol.21 , Issue.3 , pp. 435-462
    • Conejo, A.J.1    Contreras, J.2    Espinola, R.3    Plazas, M.A.4
  • 16
    • 33748770083 scopus 로고    scopus 로고
    • Feature signature prediction of a boring process using neural network modeling with confidence bounds
    • DOI 10.1007/s00170-005-0114-x
    • G. Yu, H. Qiu, D. Djurdjanovic, and J. Lee Feature signature prediction of a boring process using neural network modeling with confidence bounds The International Journal of Advanced Manufacturing Technology 30 7 2006 614 621 (Pubitemid 44411189)
    • (2006) International Journal of Advanced Manufacturing Technology , vol.30 , Issue.7-8 , pp. 614-621
    • Yu, G.1    Qiu, H.2    Djurdjanovic, D.3    Lee, J.4
  • 17
    • 77954834717 scopus 로고    scopus 로고
    • Construction of optimal prediction intervals for load forecasting problem
    • A. Khosravi, S. Nahavandi, and D. Creighton Construction of optimal prediction intervals for load forecasting problem IEEE Transactions on Power Systems 25 2010 1496 1503
    • (2010) IEEE Transactions on Power Systems , vol.25 , pp. 1496-1503
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 18
    • 33746375347 scopus 로고    scopus 로고
    • A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes
    • DOI 10.1109/TNS.2006.871662, 1645061
    • E. Zio A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes IEEE Transactions on Nuclear Science 53 3 2006 1460 1478 (Pubitemid 44109454)
    • (2006) IEEE Transactions on Nuclear Science , vol.53 , Issue.3 , pp. 1460-1478
    • Zio, E.1
  • 19
    • 14344255817 scopus 로고    scopus 로고
    • Probabilistic wind power forecasts using local quantile regression
    • DOI 10.1002/we.107
    • J.B. Bremnes Probabilistic wind power forecasts using local quantile regression Wind Energy 7 1 2004 47 54 (Pubitemid 40290428)
    • (2004) Wind Energy , vol.7 , Issue.1 , pp. 47-54
    • Bremnes, J.B.1
  • 20
    • 34548156412 scopus 로고    scopus 로고
    • Non-parametric probabilistic forecasts of wind power: Required properties and evaluation
    • DOI 10.1002/we.230
    • P. Pinson, H.A. Nielsen, J.K. Mller, H. Madsen, and G.N. Kariniotakis Non-parametric probabilistic forecasts of wind power: required properties and evaluation Wind Energy 10 6 2007 497 516 (Pubitemid 350273129)
    • (2007) Wind Energy , vol.10 , Issue.6 , pp. 497-516
    • Pinson, P.1    Nielsen, H.Aa.2    Moller, J.K.3    Madsen, H.4    Kariniotakis, G.N.5
  • 22
    • 0032202770 scopus 로고    scopus 로고
    • Prediction intervals for neural networks via nonlinear regression
    • d. Veaux, J. Schumi, J. Schweinsberg, and L.H. Ungar Prediction intervals for neural networks via nonlinear regression Technometrics 40 4 1998 273 282 (Pubitemid 128631254)
    • (1998) Technometrics , vol.40 , Issue.4 , pp. 273-282
    • De Veaux, R.D.1    Schweinsberg, J.2    Schumi, J.3    Ungar, L.H.4
  • 23
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D.J.C. MacKay The evidence framework applied to classification networks Neural Computation 4 5 1992 720 736
    • (1992) Neural Computation , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D.J.C.1
  • 25
    • 84898947879 scopus 로고    scopus 로고
    • Practical confidence and prediction intervals
    • T.P.M. Mozer, M. Jordan, MIT Press
    • T. Heskes Practical confidence and prediction intervals T.P.M. Mozer, M. Jordan, Neural Information Processing Systems, vol. 9 1997 MIT Press 176 182
    • (1997) Neural Information Processing Systems, Vol. 9 , pp. 176-182
    • Heskes, T.1
  • 27
    • 79952186591 scopus 로고    scopus 로고
    • A lower upper bound estimation method for construction of neural network-based prediction intervals
    • A. Khosravi, S. Nahavandi, D. Creighton, and A.F. Atiya A lower upper bound estimation method for construction of neural network-based prediction intervals IEEE Transactions on Neural Networks 22 3 2011 337 346
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.3 , pp. 337-346
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3    Atiya, A.F.4
  • 28
    • 80051799000 scopus 로고    scopus 로고
    • Reliable prediction intervals with regression neural networks
    • H. Papadopoulos, and H. Haralambous Reliable prediction intervals with regression neural networks Neural Networks 24 8 2011 842 851
    • (2011) Neural Networks , vol.24 , Issue.8 , pp. 842-851
    • Papadopoulos, H.1    Haralambous, H.2
  • 30
    • 2942701936 scopus 로고    scopus 로고
    • Adaptive short-term electricity price forecasting using artificial neural networks in the restructured power markets
    • H.Y. Yamin, S.M. Shahidehpour, and Z. Li Adaptive short-term electricity price forecasting using artificial neural networks in the restructured power markets International Journal of Electrical Power & Energy Systems 26 8 2004 571 581
    • (2004) International Journal of Electrical Power & Energy Systems , vol.26 , Issue.8 , pp. 571-581
    • Yamin, H.Y.1    Shahidehpour, S.M.2    Li, Z.3
  • 32
    • 13844320129 scopus 로고    scopus 로고
    • Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method
    • DOI 10.1109/TPWRS.2004.840416
    • L. Zhang, and P. Luh Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method IEEE Transactions on Power Systems 20 1 2005 59 66 (Pubitemid 40259420)
    • (2005) IEEE Transactions on Power Systems , vol.20 , Issue.1 , pp. 59-66
    • Zhang, L.1    Luh, P.B.2
  • 34
    • 85032751446 scopus 로고    scopus 로고
    • Bootstrap-inspired techniques in computation intelligence
    • DOI 10.1109/MSP.2007.4286565
    • R. Polikar Bootstrap-inspired techniques in computation intelligence IEEE Signal Processing Magazine 24 4 2007 59 72 (Pubitemid 47316168)
    • (2007) IEEE Signal Processing Magazine , vol.24 , Issue.4 , pp. 59-72
    • Polikar, R.1
  • 36
    • 0000181737 scopus 로고
    • The jackknife and the bootstrap for general stationary observations
    • H.R. Kunsch The jackknife and the bootstrap for general stationary observations Annals of Statistics 17 3 1989 1217 1241
    • (1989) Annals of Statistics , vol.17 , Issue.3 , pp. 1217-1241
    • Kunsch, H.R.1
  • 37
    • 0343485088 scopus 로고    scopus 로고
    • Block length selection in the bootstrap for time series
    • DOI 10.1016/S0167-9473(99)00014-6, PII S0167947399000146
    • P. Buhlmann, and H.R. Kunsch Block length selection in the bootstrap for time series Computational Statistics & Data Analysis 31 3 1999 295 310 (Pubitemid 30005737)
    • (1999) Computational Statistics and Data Analysis , vol.31 , Issue.3 , pp. 295-310
    • Buhlmann, P.1    Kunsch, H.R.2
  • 38
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation
    • R.F. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation Econometrica 50 1982 987 1007
    • (1982) Econometrica , vol.50 , pp. 987-1007
    • Engle, R.F.1
  • 39
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroscedasticity
    • T. Bollerslev Generalized autoregressive conditional heteroscedasticity Journal of Econometrics 31 1986 307 327
    • (1986) Journal of Econometrics , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 40
    • 19644379708 scopus 로고    scopus 로고
    • A forecast comparison of volatility models: Does anything beat a GARCH(1,1)?
    • DOI 10.1002/jae.800
    • P. Hansen, and A. Lunde A forecast comparison of volatility models: does anything beat a GARCH(1,1) model? Journal of Applied Economics 20 2004 873 889 (Pubitemid 43097870)
    • (2005) Journal of Applied Econometrics , vol.20 , Issue.7 , pp. 873-889
    • Hansen, P.R.1    Lunde, A.2
  • 41
    • 0040799913 scopus 로고    scopus 로고
    • The relevance property for prediction intervals
    • P. Kabaila The relevance property for prediction intervals Journal of Time Series Analysis 20 1999 655 662
    • (1999) Journal of Time Series Analysis , vol.20 , pp. 655-662
    • Kabaila, P.1
  • 46
    • 70449526290 scopus 로고    scopus 로고
    • A prediction interval-based approach to determine optimal structures of neural network metamodels
    • A. Khosravi, S. Nahavandi, and D. Creighton A prediction interval-based approach to determine optimal structures of neural network metamodels Expert Systems with Applications 37 2010 2377 2387
    • (2010) Expert Systems with Applications , vol.37 , pp. 2377-2387
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 48
    • 80053644209 scopus 로고    scopus 로고
    • Prediction interval construction and optimization for adaptive neuro fuzzy inference systems
    • A. Khosravi, S. Nahavandi, and D. Creighton Prediction interval construction and optimization for adaptive neuro fuzzy inference systems IEEE Transactions on Fuzzy Systems 19 5 2011 983 988
    • (2011) IEEE Transactions on Fuzzy Systems , vol.19 , Issue.5 , pp. 983-988
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.