메뉴 건너뛰기




Volumn 8, Issue , 2017, Pages

Electricity from methane by reversing methanogenesis

Author keywords

[No Author keywords available]

Indexed keywords

ACETIC ACID; METHANE; OXIDOREDUCTASE;

EID: 85019920438     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms15419     Document Type: Article
Times cited : (140)

References (59)
  • 1
    • 0039808935 scopus 로고
    • Bioelectrochemical energy conversion
    • Berk, R. S. & Canfield, J. H. Bioelectrochemical energy conversion. Appl. Microbiol. 12, 10-12 (1964).
    • (1964) Appl. Microbiol. , vol.12 , pp. 10-12
    • Berk, R.S.1    Canfield, J.H.2
  • 2
    • 0005626852 scopus 로고
    • Preliminary experiments on a microbial fuel cell
    • Davis, J. B. & Yarbrough, H. F. Preliminary experiments on a microbial fuel cell. Science 137, 615-616 (1962).
    • (1962) Science , vol.137 , pp. 615-616
    • Davis, J.B.1    Yarbrough, H.F.2
  • 3
    • 4544262280 scopus 로고    scopus 로고
    • Cathode performance as a factor in electricity generation in microbial fuel cells
    • Oh, S., Min, B. & Logan, B. E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38, 4900-4904 (2004).
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 4900-4904
    • Oh, S.1    Min, B.2    Logan, B.E.3
  • 4
    • 34248181574 scopus 로고    scopus 로고
    • Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells
    • Logan, B., Cheng, S., Watson, V. & Estadt, G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41, 3341-3346 (2007).
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 3341-3346
    • Logan, B.1    Cheng, S.2    Watson, V.3    Estadt, G.4
  • 5
    • 36349027640 scopus 로고    scopus 로고
    • Electricity production from twelve monosaccharides using microbial fuel cells
    • Catal, T., Li, K., Bermek, H. & Liu, H. Electricity production from twelve monosaccharides using microbial fuel cells. J. Power Sources 175, 196-200 (2008).
    • (2008) J. Power Sources , vol.175 , pp. 196-200
    • Catal, T.1    Li, K.2    Bermek, H.3    Liu, H.4
  • 6
    • 27744556556 scopus 로고    scopus 로고
    • Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies
    • Oh, S. E. & Logan, B. E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res. 39, 4673-4682 (2005).
    • (2005) Water Res. , vol.39 , pp. 4673-4682
    • Oh, S.E.1    Logan, B.E.2
  • 7
    • 1942489157 scopus 로고    scopus 로고
    • Construction and operation of a novel mediator-and membrane-less microbial fuel cell
    • Jang, J. K. et al. Construction and operation of a novel mediator-and membrane-less microbial fuel cell. Process Biochem. 39, 1007-1012 (2004).
    • (2004) Process Biochem. , vol.39 , pp. 1007-1012
    • Jang, J.K.1
  • 8
    • 74549151753 scopus 로고    scopus 로고
    • A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
    • Pant, D., Van Bogaert, G., Diels, L. & Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technol. 101, 1533-1543 (2010).
    • (2010) Bioresource Technol. , vol.101 , pp. 1533-1543
    • Pant, D.1    Van Bogaert, G.2    Diels, L.3    Vanbroekhoven, K.4
  • 10
    • 85006856747 scopus 로고    scopus 로고
    • Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell
    • Ding, J. et al. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell. Water Res. 110, 112-119 (2016).
    • (2016) Water Res. , vol.110 , pp. 112-119
    • Ding, J.1
  • 11
    • 42449164705 scopus 로고    scopus 로고
    • Electricity generation by Geobacter sulfurreducens attached to gold electrodes
    • Richter, H. et al. Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 24, 4376-4379 (2008).
    • (2008) Langmuir , vol.24 , pp. 4376-4379
    • Richter, H.1
  • 12
    • 33751014053 scopus 로고    scopus 로고
    • Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells
    • Reguera, G. et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72, 7345-7348 (2006).
    • (2006) Appl. Environ. Microbiol. , vol.72 , pp. 7345-7348
    • Reguera, G.1
  • 13
    • 84874582197 scopus 로고    scopus 로고
    • Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis
    • Kotloski, N. J. & Gralnick, J. A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4, e00553-12 (2013).
    • (2013) MBio , vol.4 , pp. e00553-e00612
    • Kotloski, N.J.1    Gralnick, J.A.2
  • 14
    • 0008049769 scopus 로고    scopus 로고
    • Electricity generation in microbial fuel cells using neutral red as an electronophore
    • Park, D. H. & Zeikus, J. G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66, 1292-1297 (2000).
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 1292-1297
    • Park, D.H.1    Zeikus, J.G.2
  • 15
    • 80052956402 scopus 로고    scopus 로고
    • Methylene blue as electron promoters in microbial fuel cell
    • Rahimnejad, M. et al. Methylene blue as electron promoters in microbial fuel cell. Int. J. Hydrogen Energy 36, 13335-13341 (2011).
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 13335-13341
    • Rahimnejad, M.1
  • 16
    • 77957901715 scopus 로고    scopus 로고
    • Recent developments in microbial fuel cells: A review
    • Das, S. & Mangwani, N. Recent developments in microbial fuel cells: a review. J. Sci. Ind. Res. 69, 727-731 (2010).
    • (2010) J. Sci. Ind. Res. , vol.69 , pp. 727-731
    • Das, S.1    Mangwani, N.2
  • 17
    • 70350593544 scopus 로고    scopus 로고
    • Improved attribution of climate forcing to emissions
    • Shindell, D. T. et al. Improved attribution of climate forcing to emissions. Science 326, 716-718 (2009).
    • (2009) Science , vol.326 , pp. 716-718
    • Shindell, D.T.1
  • 18
    • 79955792612 scopus 로고    scopus 로고
    • Methane and the greenhouse-gas footprint of natural gas from shale formations
    • Howarth, R. W., Santoro, R. & Ingraffea, A. Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim. Change 106, 679-690 (2011).
    • (2011) Clim. Change , vol.106 , pp. 679-690
    • Howarth, R.W.1    Santoro, R.2    Ingraffea, A.3
  • 19
    • 84999869486 scopus 로고    scopus 로고
    • Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: Implications for policy
    • Howarth, R. W. Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: implications for policy. Energy Emiss. Control Technol. 3, 45-54 (2015).
    • (2015) Energy Emiss. Control Technol. , vol.3 , pp. 45-54
    • Howarth, R.W.1
  • 20
    • 84899066005 scopus 로고    scopus 로고
    • Rethinking biological activation of methane and conversion to liquid fuels
    • Haynes, C. A. & Gonzalez, R. Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10, 331-339 (2014).
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 331-339
    • Haynes, C.A.1    Gonzalez, R.2
  • 21
    • 84943604629 scopus 로고    scopus 로고
    • Systems strategies for developing industrial microbial strains
    • Lee, S. Y. & Kim, H. U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33, 1061-1072 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 1061-1072
    • Lee, S.Y.1    Kim, H.U.2
  • 22
    • 33847720244 scopus 로고    scopus 로고
    • Oceanic methane biogeochemistry
    • Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486-513 (2007).
    • (2007) Chem. Rev. , vol.107 , pp. 486-513
    • Reeburgh, W.S.1
  • 23
    • 0036417909 scopus 로고    scopus 로고
    • Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: A review
    • Valentine, D. L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek 81, 271-282 (2002).
    • (2002) Antonie van Leeuwenhoek , vol.81 , pp. 271-282
    • Valentine, D.L.1
  • 24
    • 84949257795 scopus 로고    scopus 로고
    • Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source
    • Timmers, P. H. et al. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. ISME J. 10, 1400-1412 (2016).
    • (2016) ISME J. , vol.10 , pp. 1400-1412
    • Timmers, P.H.1
  • 25
    • 84945289920 scopus 로고    scopus 로고
    • Single cell activity reveals direct electron transfer in methanotrophic consortia
    • McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531-535 (2015).
    • (2015) Nature , vol.526 , pp. 531-535
    • McGlynn, S.E.1    Chadwick, G.L.2    Kempes, C.P.3    Orphan, V.J.4
  • 26
    • 84883134016 scopus 로고    scopus 로고
    • Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage
    • Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567-570 (2013).
    • (2013) Nature , vol.500 , pp. 567-570
    • Haroon, M.F.1
  • 27
    • 84994533192 scopus 로고    scopus 로고
    • Archaea catalyze iron-dependent anaerobic oxidation of methane
    • Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA 113, 12792-12796 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 12792-12796
    • Ettwig, K.F.1
  • 28
    • 84957875989 scopus 로고    scopus 로고
    • Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction
    • Scheller, S. et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703-707 (2016).
    • (2016) Science , vol.351 , pp. 703-707
    • Scheller, S.1
  • 29
    • 70349559191 scopus 로고    scopus 로고
    • Anaerobic oxidation of methane: Progress with an unknown process
    • Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311-334 (2009).
    • (2009) Annu. Rev. Microbiol. , vol.63 , pp. 311-334
    • Knittel, K.1    Boetius, A.2
  • 30
    • 84954182240 scopus 로고    scopus 로고
    • Reversing methanogenesis to capture methane for liquid biofuel precursors
    • Soo, V. W. et al. Reversing methanogenesis to capture methane for liquid biofuel precursors. Microb. Cell Fact. 15, 11 (2016).
    • (2016) Microb. Cell Fact. , vol.15 , pp. 11
    • Soo, V.W.1
  • 31
    • 84855441495 scopus 로고    scopus 로고
    • Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically
    • Shima, S. et al. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481, 98-101 (2012).
    • (2012) Nature , vol.481 , pp. 98-101
    • Shima, S.1
  • 32
    • 85000443061 scopus 로고    scopus 로고
    • Metabolic engineering of Methanosarcina acetivorans for lactate production from methane
    • McAnulty, M. J. et al. Metabolic engineering of Methanosarcina acetivorans for lactate production from methane. Biotechnol. Bioeng. 114, 852-861 (2017).
    • (2017) Biotechnol. Bioeng. , vol.114 , pp. 852-861
    • McAnulty, M.J.1
  • 33
    • 84923607447 scopus 로고    scopus 로고
    • Air-adapted Methanosarcina acetivorans shows high methane production and develops resistance against oxygen stress
    • Jasso-Chavez, R. et al. Air-adapted Methanosarcina acetivorans shows high methane production and develops resistance against oxygen stress. PLoS ONE 10, e0117331 (2015).
    • (2015) PLoS ONE , vol.10 , pp. e0117331
    • Jasso-Chavez, R.1
  • 34
    • 84904322163 scopus 로고    scopus 로고
    • Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH
    • Okamoto, A. et al. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Sci. Rep. 4, 5628 (2014).
    • (2014) Sci. Rep. , vol.4 , pp. 5628
    • Okamoto, A.1
  • 35
    • 84983283879 scopus 로고    scopus 로고
    • Next-generation studies of microbial biofilm communities
    • Rice, S. A., Wuertz, S. & Kjelleberg, S. Next-generation studies of microbial biofilm communities. Microb. Biotechnol. 9, 677-680 (2016).
    • (2016) Microb. Biotechnol. , vol.9 , pp. 677-680
    • Rice, S.A.1    Wuertz, S.2    Kjelleberg, S.3
  • 36
    • 0037337606 scopus 로고    scopus 로고
    • Electricity production by Geobacter sulfurreducens attached to electrodes
    • Bond, D. R. & Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548-1555 (2003).
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 1548-1555
    • Bond, D.R.1    Lovley, D.R.2
  • 37
    • 76649102410 scopus 로고    scopus 로고
    • The effect of flavin electron shuttles in microbial fuel cells current production
    • Velasquez-Orta, S. B. et al. The effect of flavin electron shuttles in microbial fuel cells current production. Appl. Microbiol. Biotechnol. 85, 1373-1381 (2010).
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 1373-1381
    • Velasquez-Orta, S.B.1
  • 38
    • 84911375779 scopus 로고    scopus 로고
    • COD removal characteristics in air-cathode microbial fuel cells
    • Zhang, X. et al. COD removal characteristics in air-cathode microbial fuel cells. Bioresource Technol. 176, 23-31 (2015).
    • (2015) Bioresource Technol. , vol.176 , pp. 23-31
    • Zhang, X.1
  • 39
    • 84861923332 scopus 로고    scopus 로고
    • Microbial fuel cells demonstrate high coulombic efficiency applicable for water remediation
    • Devasahayam, M. & Masih, S. A. Microbial fuel cells demonstrate high coulombic efficiency applicable for water remediation. Indian J. Exp. Biol. 50, 430-438 (2012).
    • (2012) Indian J. Exp. Biol. , vol.50 , pp. 430-438
    • Devasahayam, M.1    Masih, S.A.2
  • 40
    • 77955851595 scopus 로고    scopus 로고
    • Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera
    • Kiely, P. D. et al. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Appl. Microbiol. Biotechnol. 88, 371-380 (2010).
    • (2010) Appl. Microbiol. Biotechnol. , vol.88 , pp. 371-380
    • Kiely, P.D.1
  • 41
    • 84982705974 scopus 로고    scopus 로고
    • Paracoccus angustae sp. Nov., isolated from soil
    • Sun, X., Luo, P. & Li, M. Paracoccus angustae sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 65, 3469-3475 (2015).
    • (2015) Int. J. Syst. Evol. Microbiol. , vol.65 , pp. 3469-3475
    • Sun, X.1    Luo, P.2    Li, M.3
  • 42
    • 84933039018 scopus 로고    scopus 로고
    • Paracoccus panacisoli sp. Nov., isolated from a forest soil cultivated with Vietnamese ginseng
    • Nguyen, N. L. et al. Paracoccus panacisoli sp. nov., isolated from a forest soil cultivated with Vietnamese ginseng. Int. J. Syst. Evol. Microbiol. 65, 1491-1497 (2015).
    • (2015) Int. J. Syst. Evol. Microbiol. , vol.65 , pp. 1491-1497
    • Nguyen, N.L.1
  • 43
    • 79952485067 scopus 로고    scopus 로고
    • Paracoccus niistensis sp. Nov., isolated from forest soil, India
    • Dastager, S. G. et al. Paracoccus niistensis sp. nov., isolated from forest soil, India. Antonie Van Leeuwenhoek 99, 501-506 (2011).
    • (2011) Antonie van Leeuwenhoek , vol.99 , pp. 501-506
    • Dastager, S.G.1
  • 44
    • 0032863423 scopus 로고    scopus 로고
    • Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction
    • Lovley, D. R. & Blunt-Harris, E. L. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl. Environ. Microbiol. 65, 4252-4254 (1999).
    • (1999) Appl. Environ. Microbiol. , vol.65 , pp. 4252-4254
    • Lovley, D.R.1    Blunt-Harris, E.L.2
  • 45
    • 84927511397 scopus 로고    scopus 로고
    • Syntrophic growth via quinone-mediated interspecies electron transfer
    • Smith, J. A., Nevin, K. P. & Lovley, D. R. Syntrophic growth via quinone-mediated interspecies electron transfer. Front. Microbiol. 6, 121 (2015).
    • (2015) Front. Microbiol. , vol.6 , pp. 121
    • Smith, J.A.1    Nevin, K.P.2    Lovley, D.R.3
  • 46
    • 0037470965 scopus 로고    scopus 로고
    • Evaluation of electron-shuttling compounds in microbial ferric iron reduction
    • Straub, K. L. & Schink, B. Evaluation of electron-shuttling compounds in microbial ferric iron reduction. FEMS Microbiol. Lett. 220, 229-233 (2003).
    • (2003) FEMS Microbiol. Lett. , vol.220 , pp. 229-233
    • Straub, K.L.1    Schink, B.2
  • 47
    • 0032190289 scopus 로고    scopus 로고
    • Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms
    • Scott, D. T. et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32, 2984-2989 (1998).
    • (1998) Environ. Sci. Technol. , vol.32 , pp. 2984-2989
    • Scott, D.T.1
  • 48
    • 0029790133 scopus 로고    scopus 로고
    • Humic substances as electron acceptors for microbial respiration
    • Lovley, D. R. et al. Humic substances as electron acceptors for microbial respiration. Nature 382, 445-448 (1996).
    • (1996) Nature , vol.382 , pp. 445-448
    • Lovley, D.R.1
  • 49
    • 77950283289 scopus 로고    scopus 로고
    • Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate
    • Voordeckers, J. W., Kim, B. C., Izallalen, M. & Lovley, D. R. Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate. Appl. Environ. Microbiol. 76, 2371-2375 (2010).
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 2371-2375
    • Voordeckers, J.W.1    Kim, B.C.2    Izallalen, M.3    Lovley, D.R.4
  • 50
    • 84857082945 scopus 로고    scopus 로고
    • Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration
    • Richter, K., Schicklberger, M. & Gescher, J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl. Environ. Microbiol. 78, 913-921 (2012).
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 913-921
    • Richter, K.1    Schicklberger, M.2    Gescher, J.3
  • 51
    • 0029796392 scopus 로고    scopus 로고
    • Molecular, genetic, and biochemical characterization of the serC gene of Methanosarcina barkeri Fusaro
    • Metcalf, W. W., Zhang, J.-K., Shi, X. & Wolfe, R. S. Molecular, genetic, and biochemical characterization of the serC gene of Methanosarcina barkeri Fusaro. J. Bacteriol. 178, 5797-5802 (1996).
    • (1996) J. Bacteriol. , vol.178 , pp. 5797-5802
    • Metcalf, W.W.1    Zhang, J.-K.2    Shi, X.3    Wolfe, R.S.4
  • 52
    • 0028050079 scopus 로고
    • Geobacter sulfurreducens sp. Nov., a hydrogen-and acetateoxidizing dissimilatory metal-reducing microorganism
    • Caccavo, F. et al. Geobacter sulfurreducens sp. nov., a hydrogen-and acetateoxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60, 3752-3759 (1994).
    • (1994) Appl. Environ. Microbiol. , vol.60 , pp. 3752-3759
    • Caccavo, F.1
  • 53
    • 84938880111 scopus 로고    scopus 로고
    • Link between capacity for current production and syntrophic growth in Geobacter species
    • Rotaru, A. E., Woodard, T. L., Nevin, K. P. & Lovley, D. R. Link between capacity for current production and syntrophic growth in Geobacter species. Front. Microbiol. 6, 744 (2015).
    • (2015) Front. Microbiol. , vol.6 , pp. 744
    • Rotaru, A.E.1    Woodard, T.L.2    Nevin, K.P.3    Lovley, D.R.4
  • 54
    • 84945901117 scopus 로고    scopus 로고
    • Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles
    • Su, Y. et al. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Sci. Rep. 5, 15824 (2015).
    • (2015) Sci. Rep. , vol.5 , pp. 15824
    • Su, Y.1
  • 55
    • 0030900723 scopus 로고    scopus 로고
    • A genetic system for Archaea of the genus Methanosarcina: Liposome-mediated transformation and construction of shuttle vectors
    • Metcalf, W. W. et al. A genetic system for Archaea of the genus Methanosarcina: liposome-mediated transformation and construction of shuttle vectors. Proc. Natl Acad. Sci. USA 94, 2626-2631 (1997).
    • (1997) Proc. Natl Acad. Sci. USA , vol.94 , pp. 2626-2631
    • Metcalf, W.W.1
  • 56
    • 84865281164 scopus 로고    scopus 로고
    • Scanning electron microscopy
    • Chapter 2, Unit 2B 2
    • Fischer, E. R. et al. Scanning electron microscopy. Curr. Protoc. Microbiol. Chapter 2, Unit 2B 2 (2012).
    • (2012) Curr. Protoc. Microbiol.
    • Fischer, E.R.1
  • 57
    • 84884386678 scopus 로고    scopus 로고
    • Evaluation of multi-brush anode systems in microbial fuel cells
    • Lanas, V. & Logan, B. E. Evaluation of multi-brush anode systems in microbial fuel cells. Bioresource Technol. 148, 379-385 (2013).
    • (2013) Bioresource Technol. , vol.148 , pp. 379-385
    • Lanas, V.1    Logan, B.E.2
  • 58
    • 71249083432 scopus 로고    scopus 로고
    • Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells
    • Feng, Y. J., Yang, Q., Wang, X. & Logan, B. E. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J. Power Sources 195, 1841-1844 (2010).
    • (2010) J. Power Sources , vol.195 , pp. 1841-1844
    • Feng, Y.J.1    Yang, Q.2    Wang, X.3    Logan, B.E.4
  • 59
    • 84929508812 scopus 로고    scopus 로고
    • Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing
    • Takahashi, S. et al. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 9, e105592 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e105592
    • Takahashi, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.