-
1
-
-
84857918290
-
A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design
-
Ahn Y., Logan B.E. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design. Appl. Microbiol. Biotechnol. 2012, 93(5):2241-2248.
-
(2012)
Appl. Microbiol. Biotechnol.
, vol.93
, Issue.5
, pp. 2241-2248
-
-
Ahn, Y.1
Logan, B.E.2
-
2
-
-
68149169187
-
A model-based parametric analysis of a direct ethanol polymer electrolyte membrane fuel cell performance
-
Andreadis G.M., Podias A.K.M., Tsiakaras P.E. A model-based parametric analysis of a direct ethanol polymer electrolyte membrane fuel cell performance. J. Power Sources 2009, 194(1):397-407.
-
(2009)
J. Power Sources
, vol.194
, Issue.1
, pp. 397-407
-
-
Andreadis, G.M.1
Podias, A.K.M.2
Tsiakaras, P.E.3
-
3
-
-
33344465903
-
Increased performance of single-chamber microbial fuel cells using an improved cathode structure
-
Cheng S., Liu H., Logan B.E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 2006, 8(3):489-494.
-
(2006)
Electrochem. Commun.
, vol.8
, Issue.3
, pp. 489-494
-
-
Cheng, S.1
Liu, H.2
Logan, B.E.3
-
4
-
-
33645761181
-
Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing
-
Cheng S., Liu H., Logan B.E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 2006, 40(7):2426-2432.
-
(2006)
Environ. Sci. Technol.
, vol.40
, Issue.7
, pp. 2426-2432
-
-
Cheng, S.1
Liu, H.2
Logan, B.E.3
-
5
-
-
66249100237
-
Direct biological conversion of electrical current into methane by electromethanogenesis
-
Cheng S., Xing D., Call D.F., Logan B.E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 2009, 43(10):3953-3958.
-
(2009)
Environ. Sci. Technol.
, vol.43
, Issue.10
, pp. 3953-3958
-
-
Cheng, S.1
Xing, D.2
Call, D.F.3
Logan, B.E.4
-
6
-
-
78650608282
-
Electricity generation of single-chamber microbial fuel cells at low temperatures
-
Cheng S., Xing D., Logan B.E. Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens. Bioelectron. 2011, 26(5):1913-1917.
-
(2011)
Biosens. Bioelectron.
, vol.26
, Issue.5
, pp. 1913-1917
-
-
Cheng, S.1
Xing, D.2
Logan, B.E.3
-
7
-
-
71249083432
-
Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells
-
Feng Y., Yang Q., Wang X., Logan B.E. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J. Power Sources 2010, 195(7):1841-1844.
-
(2010)
J. Power Sources
, vol.195
, Issue.7
, pp. 1841-1844
-
-
Feng, Y.1
Yang, Q.2
Wang, X.3
Logan, B.E.4
-
8
-
-
79961024498
-
Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater
-
Hays S., Zhang F., Logan B.E. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. J. Power Sources 2011, 196(20):8293-8300.
-
(2011)
J. Power Sources
, vol.196
, Issue.20
, pp. 8293-8300
-
-
Hays, S.1
Zhang, F.2
Logan, B.E.3
-
9
-
-
69249104648
-
Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies
-
He Z., Mansfeld F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ. Sci. 2009, 2(2):215-219.
-
(2009)
Energy Environ. Sci.
, vol.2
, Issue.2
, pp. 215-219
-
-
He, Z.1
Mansfeld, F.2
-
10
-
-
33748549027
-
An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy
-
He Z., Wagner N., Minteer S.D., Angenent L.T. An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ. Sci. Technol. 2006, 40(17):5212-5217.
-
(2006)
Environ. Sci. Technol.
, vol.40
, Issue.17
, pp. 5212-5217
-
-
He, Z.1
Wagner, N.2
Minteer, S.D.3
Angenent, L.T.4
-
11
-
-
80052384324
-
Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells
-
Hong Y., Call D.F., Werner C.M., Logan B.E. Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells. Biosens. Bioelectron. 2011, 28(1):71-76.
-
(2011)
Biosens. Bioelectron.
, vol.28
, Issue.1
, pp. 71-76
-
-
Hong, Y.1
Call, D.F.2
Werner, C.M.3
Logan, B.E.4
-
12
-
-
80052481795
-
Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells
-
Hutchinson A.J., Tokash J.C., Logan B.E. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells. J. Power Sources 2011, 196(22):9213-9219.
-
(2011)
J. Power Sources
, vol.196
, Issue.22
, pp. 9213-9219
-
-
Hutchinson, A.J.1
Tokash, J.C.2
Logan, B.E.3
-
13
-
-
69349103099
-
Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes
-
Jiang D., Li B. Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes. Biochem. Eng. J. 2009, 47(1-3):31-37.
-
(2009)
Biochem. Eng. J.
, vol.47
, Issue.1-3
, pp. 31-37
-
-
Jiang, D.1
Li, B.2
-
14
-
-
33846842443
-
Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells
-
Kim J.R., Cheng S., Oh S.-E., Logan B.E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 2007, 41(3):1004-1009.
-
(2007)
Environ. Sci. Technol.
, vol.41
, Issue.3
, pp. 1004-1009
-
-
Kim, J.R.1
Cheng, S.2
Oh, S.-E.3
Logan, B.E.4
-
15
-
-
84861889475
-
Scaling-up microbial fuel cells: configuration and potential drop phenomenon at series connection of unit cells in shared anolyte
-
Kim D., An J., Kim B., Jang J.K., Kim B.H., Chang I.S. Scaling-up microbial fuel cells: configuration and potential drop phenomenon at series connection of unit cells in shared anolyte. ChemSusChem 2012, 5(6):1086-1091.
-
(2012)
ChemSusChem
, vol.5
, Issue.6
, pp. 1086-1091
-
-
Kim, D.1
An, J.2
Kim, B.3
Jang, J.K.4
Kim, B.H.5
Chang, I.S.6
-
16
-
-
3242707506
-
Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane
-
Liu H., Logan B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004, 38(14):4040-4046.
-
(2004)
Environ. Sci. Technol.
, vol.38
, Issue.14
, pp. 4040-4046
-
-
Liu, H.1
Logan, B.E.2
-
17
-
-
22344440310
-
Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration
-
Liu H., Cheng S., Logan B.E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 2005, 39(14):5488-5493.
-
(2005)
Environ. Sci. Technol.
, vol.39
, Issue.14
, pp. 5488-5493
-
-
Liu, H.1
Cheng, S.2
Logan, B.E.3
-
18
-
-
2342470161
-
Extracting hydrogen and electricity from renewable resources
-
Logan B.E. Extracting hydrogen and electricity from renewable resources. Environ. Sci. Technol. 2004, 38(9):160A-167A.
-
(2004)
Environ. Sci. Technol.
, vol.38
, Issue.9
-
-
Logan, B.E.1
-
19
-
-
33748566549
-
Microbial fuel cells: methodology and technology
-
Logan B.E., Hamelers B., Rozendal R., Schröder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaey K. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 2006, 40(17):5181-5192.
-
(2006)
Environ. Sci. Technol.
, vol.40
, Issue.17
, pp. 5181-5192
-
-
Logan, B.E.1
Hamelers, B.2
Rozendal, R.3
Schröder, U.4
Keller, J.5
Freguia, S.6
Aelterman, P.7
Verstraete, W.8
Rabaey, K.9
-
20
-
-
34248181574
-
Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells
-
Logan B., Cheng S., Watson V., Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 2007, 41(9):3341-3346.
-
(2007)
Environ. Sci. Technol.
, vol.41
, Issue.9
, pp. 3341-3346
-
-
Logan, B.1
Cheng, S.2
Watson, V.3
Estadt, G.4
-
21
-
-
33745225414
-
Bug juice: harvesting electricity with microorganisms
-
Lovley D.R. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 2006, 4(7):497-508.
-
(2006)
Nat. Rev. Microbiol.
, vol.4
, Issue.7
, pp. 497-508
-
-
Lovley, D.R.1
-
22
-
-
70350496000
-
Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells
-
Oh S.-E., Kim J.R., Joo, Logan B.E. Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci. Technol. 2009, 60(5):1311-1317.
-
(2009)
Water Sci. Technol.
, vol.60
, Issue.5
, pp. 1311-1317
-
-
Oh, S.-E.1
Kim, J.R.2
Joo3
Logan, B.E.4
-
23
-
-
19444367096
-
Microbial fuel cells: novel biotechnology for energy generation
-
Rabaey K., Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005, 23(6):291-298.
-
(2005)
Trends Biotechnol.
, vol.23
, Issue.6
, pp. 291-298
-
-
Rabaey, K.1
Verstraete, W.2
-
24
-
-
79952388774
-
Neutral hydrophilic cathode catalyst binders for microbial fuel cells
-
Saito T., Roberts T.H., Long T.E., Logan B.E., Hickner M.A. Neutral hydrophilic cathode catalyst binders for microbial fuel cells. Energy Environ. Sci. 2011, 4(3):928-934.
-
(2011)
Energy Environ. Sci.
, vol.4
, Issue.3
, pp. 928-934
-
-
Saito, T.1
Roberts, T.H.2
Long, T.E.3
Logan, B.E.4
Hickner, M.A.5
-
25
-
-
84884403203
-
-
USGS, 2013. Metal prices in the United States through 2010: U.S. Geological Survey Scientific Investigations Report 2012-5188
-
USGS, 2013. Metal prices in the United States through 2010: U.S. Geological Survey Scientific Investigations Report 2012-5188, vol. 2013.
-
(2013)
-
-
-
27
-
-
69549128558
-
Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells
-
Wang X., Cheng S., Feng Y., Merrill M.D., Saito T., Logan B.E. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol. 2009, 43(17):6870-6874.
-
(2009)
Environ. Sci. Technol.
, vol.43
, Issue.17
, pp. 6870-6874
-
-
Wang, X.1
Cheng, S.2
Feng, Y.3
Merrill, M.D.4
Saito, T.5
Logan, B.E.6
-
28
-
-
78650554452
-
Analysis of polarization methods for elimination of power overshoot in microbial fuel cells
-
Watson V.J., Logan B.E. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochem. Commun. 2011, 13(1):54-56.
-
(2011)
Electrochem. Commun.
, vol.13
, Issue.1
, pp. 54-56
-
-
Watson, V.J.1
Logan, B.E.2
-
29
-
-
84870030484
-
Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells
-
Wei B., Tokash J.C., Chen G., Hickner M.A., Logan B.E. Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells. RSC Adv. 2012, 2(33):12751-12758.
-
(2012)
RSC Adv.
, vol.2
, Issue.33
, pp. 12751-12758
-
-
Wei, B.1
Tokash, J.C.2
Chen, G.3
Hickner, M.A.4
Logan, B.E.5
-
30
-
-
34848873134
-
A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions
-
You S., Zhao Q., Zhang J., Jiang J., Wan C., Du M., Zhao S. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. J. Power Sources 2007, 173(1):172-177.
-
(2007)
J. Power Sources
, vol.173
, Issue.1
, pp. 172-177
-
-
You, S.1
Zhao, Q.2
Zhang, J.3
Jiang, J.4
Wan, C.5
Du, M.6
Zhao, S.7
-
31
-
-
79956366821
-
Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances
-
Zhang L., Zhu X., Li J., Liao Q., Ye D. Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. J. Power Sources 2011, 196(15):6029-6035.
-
(2011)
J. Power Sources
, vol.196
, Issue.15
, pp. 6029-6035
-
-
Zhang, L.1
Zhu, X.2
Li, J.3
Liao, Q.4
Ye, D.5
-
32
-
-
79952280859
-
An overview of electrode materials in microbial fuel cells
-
Zhou M., Chi M., Luo J., He H., Jin T. An overview of electrode materials in microbial fuel cells. J. Power Sources 2011, 196(10):4427-4435.
-
(2011)
J. Power Sources
, vol.196
, Issue.10
, pp. 4427-4435
-
-
Zhou, M.1
Chi, M.2
Luo, J.3
He, H.4
Jin, T.5
-
33
-
-
77957583742
-
Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes
-
Zhu N., Chen X., Zhang T., Wu P., Li P., Wu J. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresour. Technol. 2011, 102(1):422-426.
-
(2011)
Bioresour. Technol.
, vol.102
, Issue.1
, pp. 422-426
-
-
Zhu, N.1
Chen, X.2
Zhang, T.3
Wu, P.4
Li, P.5
Wu, J.6
-
34
-
-
65049085916
-
Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack
-
Zhuang L., Zhou S. Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack. Electrochem. Commun. 2009, 11(5):937-940.
-
(2009)
Electrochem. Commun.
, vol.11
, Issue.5
, pp. 937-940
-
-
Zhuang, L.1
Zhou, S.2
-
35
-
-
34248229805
-
Tubular membrane cathodes for scalable power generation in microbial fuel cells
-
Zuo Y., Cheng S., Call D., Logan B.E. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environ. Sci. Technol. 2007, 41(9):3347-3353.
-
(2007)
Environ. Sci. Technol.
, vol.41
, Issue.9
, pp. 3347-3353
-
-
Zuo, Y.1
Cheng, S.2
Call, D.3
Logan, B.E.4
|