메뉴 건너뛰기




Volumn 36, Issue 20, 2011, Pages 13335-13341

Methylene blue as electron promoters in microbial fuel cell

Author keywords

Bioelectricity; Electron mediators; Methylene blue; Microbial fuel cell; Saccharomyces cerevisiae

Indexed keywords

ANAEROBIC CONDITIONS; ANODE SURFACES; CARBON SOURCE; CATHODE CHAMBERS; DATALOGGER; ELECTRON FLOW; ELECTRON MEDIATORS; MAXIMUM POWER; METHYLENE BLUE; ORGANIC SUBSTANCES; POLARIZATION CURVES;

EID: 80052956402     PISSN: 03603199     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijhydene.2011.07.059     Document Type: Article
Times cited : (95)

References (48)
  • 2
    • 64249117846 scopus 로고    scopus 로고
    • A review of biomass-derived fuel processors for fuel cell systems
    • J. Xuan, M. Leung, D. Leung, and M. Ni A review of biomass-derived fuel processors for fuel cell systems Renewable Sustainable Energy Rev 13 2009 1301 1313
    • (2009) Renewable Sustainable Energy Rev , vol.13 , pp. 1301-1313
    • Xuan, J.1    Leung, M.2    Leung, D.3    Ni, M.4
  • 3
    • 33750932926 scopus 로고    scopus 로고
    • Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells
    • DOI 10.1016/j.jpowsour.2006.05.004, PII S0378775306008214
    • E. Zhang, W. Xu, G. Diao, and C. Shuang Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells J Power Sources 161 2006 820 825 (Pubitemid 44738751)
    • (2006) Journal of Power Sources , vol.161 , Issue.2 , pp. 820-825
    • Zhang, E.1    Xu, W.2    Diao, G.3    Shuang, C.4
  • 4
    • 52249112253 scopus 로고    scopus 로고
    • Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis
    • K. Chae, M. Choi, J. Lee, F. Ajayi, and I. Kim Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis Int J Hydrogen Energy 33 2008 5184 5192
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 5184-5192
    • Chae, K.1    Choi, M.2    Lee, J.3    Ajayi, F.4    Kim, I.5
  • 5
    • 77950297160 scopus 로고    scopus 로고
    • Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC)
    • Y. Sharma, and B. Li Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC) Int J Hydrogen Energy 35 2010 3789 3797
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 3789-3797
    • Sharma, Y.1    Li, B.2
  • 7
    • 68349139712 scopus 로고    scopus 로고
    • Effect of ionic strength, cation exchanger and inoculum age on the performance of Microbial Fuel Cells
    • Y. Mohan, and D. Das Effect of ionic strength, cation exchanger and inoculum age on the performance of Microbial Fuel Cells Int J Hydrogen Energy 34 2009 7542 7546
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 7542-7546
    • Mohan, Y.1    Das, D.2
  • 8
    • 24944546402 scopus 로고    scopus 로고
    • Biotechnology - A sustainable alternative for chemical industry
    • DOI 10.1016/j.biotechadv.2005.03.004, PII S0734975005000340
    • M. Gavrilescu, and Y. Chisti Biotechnology-a sustainable alternative for chemical industry Biotechnol Adv 23 2005 471 499 (Pubitemid 41319664)
    • (2005) Biotechnology Advances , vol.23 , Issue.7-8 , pp. 471-499
    • Gavrilescu, M.1    Chisti, Y.2
  • 9
    • 58249144863 scopus 로고    scopus 로고
    • The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions
    • A. Manohar, and F. Mansfeld The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions Electrochim Acta 54 2009 1664 1670
    • (2009) Electrochim Acta , vol.54 , pp. 1664-1670
    • Manohar, A.1    Mansfeld, F.2
  • 11
    • 34447333104 scopus 로고    scopus 로고
    • Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: Influence of substrate loading rate
    • S. Mohan, S. Raghavulu, S. Srikanth, and P. Sarma Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: Influence of substrate loading rate Curr Sci 92 2007 1720 1726 (Pubitemid 47052559)
    • (2007) Current Science , vol.92 , Issue.12 , pp. 1720-1726
    • Venkata Mohan, S.1    Veer Raghavulu, S.2    Srikanth, S.3    Sarma, P.N.4
  • 12
    • 0038705092 scopus 로고    scopus 로고
    • Biochemical fuel cells. Handbook of fuel cells-fundamentals
    • E. Katz, A. Shipway, and I. Willner Biochemical fuel cells. Handbook of fuel cells-fundamentals Technol Appl 1 2003 355 381
    • (2003) Technol Appl , vol.1 , pp. 355-381
    • Katz, E.1    Shipway, A.2    Willner, I.3
  • 14
    • 2342470161 scopus 로고    scopus 로고
    • Peer Reviewed: Extracting Hydrogen and Electricity from Renewable Resources
    • B.E. Logan Peer Reviewed: Extracting Hydrogen and Electricity from Renewable Resources Environ Sci Technol 38 2004 160 167
    • (2004) Environ Sci Technol , vol.38 , pp. 160-167
    • Logan, B.E.1
  • 15
    • 0033828608 scopus 로고    scopus 로고
    • Electricity production in biofuel cell using modified graphite electrode with neutral red
    • D. Park, S. Kim, I. Shin, and Y. Jeong Electricity production in biofuel cell using modified graphite electrode with neutral red Biotechnol Lett 22 2000 1301 1304
    • (2000) Biotechnol Lett , vol.22 , pp. 1301-1304
    • Park, D.1    Kim, S.2    Shin, I.3    Jeong, Y.4
  • 16
    • 33744906766 scopus 로고    scopus 로고
    • Microbial fuel cells: novel microbial physiologies and engineering approaches
    • DOI 10.1016/j.copbio.2006.04.006, PII S0958166906000589, Environmental Biotechnology/Energy Biotechnology
    • D. Lovley Microbial fuel cells: novel microbial physiologies and engineering approaches Curr Opin Biotechnol 17 2006 327 332 (Pubitemid 43850257)
    • (2006) Current Opinion in Biotechnology , vol.17 , Issue.3 , pp. 327-332
    • Lovley, D.R.1
  • 17
    • 0032904869 scopus 로고    scopus 로고
    • Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation
    • D. Park, and J. Zeikus Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation J Bacteriol 181 1999 2403
    • (1999) J Bacteriol , vol.181 , pp. 2403
    • Park, D.1    Zeikus, J.2
  • 18
    • 0008049769 scopus 로고    scopus 로고
    • Electricity generation in microbial fuel cells using neutral red as an electronophore
    • D. Park, and J. Zeikus Electricity generation in microbial fuel cells using neutral red as an electronophore Appl Environ Microbiol 66 2000 1292
    • (2000) Appl Environ Microbiol , vol.66 , pp. 1292
    • Park, D.1    Zeikus, J.2
  • 19
    • 77955285709 scopus 로고    scopus 로고
    • Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder
    • P. Jana, M. Behera, and M. Ghangrekar Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder Int J Hydrogen Energy 35 2010 5681 5686
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 5681-5686
    • Jana, P.1    Behera, M.2    Ghangrekar, M.3
  • 20
    • 40249098289 scopus 로고    scopus 로고
    • Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment
    • DOI 10.1016/j.bej.2007.08.023, PII S1369703X07003099
    • S. Venkata Mohan, G. Mohanakrishna, B. Reddy, R. Saravanan, and P. Sarma Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment Biochem Eng J 39 2008 121 130 (Pubitemid 351625644)
    • (2008) Biochemical Engineering Journal , vol.39 , Issue.1 , pp. 121-130
    • Venkata Mohan, S.1    Mohanakrishna, G.2    Reddy, B.P.3    Saravanan, R.4    Sarma, P.N.5
  • 21
    • 34548017839 scopus 로고    scopus 로고
    • Challenges in microbial fuel cell development and operation
    • DOI 10.1007/s00253-007-1027-4
    • B. Kim, I. Chang, and G. Gadd Challenges in microbial fuel cell development and operation Appl Microbiol Biotechnol 76 2007 485 494 (Pubitemid 47283106)
    • (2007) Applied Microbiology and Biotechnology , vol.76 , Issue.3 , pp. 485-494
    • Kim, B.H.1    Chang, I.S.2    Gadd, G.M.3
  • 22
    • 51349098769 scopus 로고    scopus 로고
    • A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material
    • Y. Zou, C. Xiang, L. Yang, L.X. Sun, F. Xu, and Z. Cao A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material Int J Hydrogen Energy 33 2008 4856 4862
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 4856-4862
    • Zou, Y.1    Xiang, C.2    Yang, L.3    Sun, L.X.4    Xu, F.5    Cao, Z.6
  • 23
    • 80052932759 scopus 로고    scopus 로고
    • Bioconversion of Whey to Electrical Energy in a Biofuel Cell Using Saccharomyces cerevisiae
    • G. Najafpour, M. Rahimnejad, N. Mokhtarian, W. Daud, and A. Ghoreyshi Bioconversion of Whey to Electrical Energy in a Biofuel Cell Using Saccharomyces cerevisiae. World Appl Sci J 8 2010 1 5
    • (2010) World Appl Sci J , vol.8 , pp. 1-5
    • Najafpour, G.1    Rahimnejad, M.2    Mokhtarian, N.3    Daud, W.4    Ghoreyshi, A.5
  • 24
    • 77954829109 scopus 로고    scopus 로고
    • Influence of growth curve phase on electricity performance of microbial fuel cell by Escherichia coli.
    • C. Wang, W. Chen, and R. Huang Influence of growth curve phase on electricity performance of microbial fuel cell by Escherichia coli. Int J Hydrogen Energy 35 2010 7217 7223
    • (2010) Int J Hydrogen Energy , vol.35 , pp. 7217-7223
    • Wang, C.1    Chen, W.2    Huang, R.3
  • 25
    • 60849128248 scopus 로고    scopus 로고
    • Kinetics of Anode Reactions for a Yeast-Catalysed Microbial Fuel Cell
    • R. Ganguli, and B.S. Dunn Kinetics of Anode Reactions for a Yeast-Catalysed Microbial Fuel Cell Fuel Cells 9 2009 44 52
    • (2009) Fuel Cells , vol.9 , pp. 44-52
    • Ganguli, R.1    Dunn, B.S.2
  • 26
    • 0038546460 scopus 로고    scopus 로고
    • A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell
    • DOI 10.1016/S0378-1097(03)00354-9
    • C.A. Pham, S.J. Jung, N.T. Phung, J. Lee, I.S. Chang, and B.H. Kim A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell FEMS Microbiol Lett 223 2003 129 134 (Pubitemid 36694421)
    • (2003) FEMS Microbiology Letters , vol.223 , Issue.1 , pp. 129-134
    • Pham, C.A.1    Jung, S.J.2    Phung, N.T.3    Lee, J.4    Chang, I.S.5    Kim, B.H.6    Yi, H.7    Chun, J.8
  • 27
    • 18344391948 scopus 로고    scopus 로고
    • Microbial phenazine production enhances electron transfer in biofuel cells
    • K. Rabaey, N. Boon, M. Hofte, and W. Verstraete Microbial phenazine production enhances electron transfer in biofuel cells Environ Sci Technol 39 2005 3401 3408
    • (2005) Environ Sci Technol , vol.39 , pp. 3401-3408
    • Rabaey, K.1    Boon, N.2    Hofte, M.3    Verstraete, W.4
  • 28
    • 0023360722 scopus 로고
    • Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens
    • DOI 10.1016/0302-4598(87)80026-0
    • C. Vega, and I. Fernández Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens Bioelectrochem Bioenerg 17 1987 217 222 (Pubitemid 18548031)
    • (1987) Bioelectrochemistry and Bioenergetics , vol.17 , Issue.2 , pp. 217-222
    • Vega Carmen, A.1    Fernandez Ivonne2
  • 29
    • 0036021051 scopus 로고    scopus 로고
    • Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans
    • DOI 10.1016/S1567-5394(02)00115-9, PII S1567539402001159
    • S. Lee, Y. Choi, S. Jung, and S. Kim Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochem 57 2002 173 178 (Pubitemid 34814959)
    • (2002) Bioelectrochemistry , vol.57 , Issue.2 , pp. 173-178
    • Lee, S.A.1    Choi, Y.2    Jung, S.3    Kim, S.4
  • 30
    • 0037074898 scopus 로고    scopus 로고
    • A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens
    • DOI 10.1016/S0141-0229(01)00478-1, PII S0141022901004781
    • H.J. Kim, H.S. Park, M.S. Hyun, I.S. Chang, M. Kim, and B.H. Kim A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30 2002 145 152 (Pubitemid 34142655)
    • (2002) Enzyme and Microbial Technology , vol.30 , Issue.2 , pp. 145-152
    • Kim, H.J.1    Park, H.S.2    Hyun, M.S.3    Chang, I.S.4    Kim, M.5    Kim, B.H.6
  • 31
    • 55549092038 scopus 로고    scopus 로고
    • The effect of different substrates and humic acid on power generation in microbial fuel cell operation
    • A. Thygesen, F.W. Poulsen, B. Min, I. Angelidaki, and A.B. Thomsen The effect of different substrates and humic acid on power generation in microbial fuel cell operation Bioresour Technol 100 2009 1186 1191
    • (2009) Bioresour Technol , vol.100 , pp. 1186-1191
    • Thygesen, A.1    Poulsen, F.W.2    Min, B.3    Angelidaki, I.4    Thomsen, A.B.5
  • 32
    • 67650085480 scopus 로고    scopus 로고
    • Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells
    • H. Yi, K.P. Nevin, B.C. Kim, A.E. Franks, A. Klimes, and L.M. Tender Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells Biosens Bioelectron 24 2009 3498 3503
    • (2009) Biosens Bioelectron , vol.24 , pp. 3498-3503
    • Yi, H.1    Nevin, K.P.2    Kim, B.C.3    Franks, A.E.4    Klimes, A.5    Tender, L.M.6
  • 33
    • 0141542682 scopus 로고    scopus 로고
    • Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
    • DOI 10.1038/nbt867
    • S.K. Chaudhuri, and D.R. Lovley Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells Nat Biotechnol 21 2003 1229 1232 (Pubitemid 37186181)
    • (2003) Nature Biotechnology , vol.21 , Issue.10 , pp. 1229-1232
    • Chaudhuri, S.K.1    Lovley, D.R.2
  • 34
    • 1542329064 scopus 로고    scopus 로고
    • Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell
    • DOI 10.1007/s00253-003-1412-6
    • B.H. Kim, H.S. Park, H.J. Kim, G.T. Kim, I.S. Chang, and J. Lee Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell Appl Microbiol Biotechnol 63 2004 672 681 (Pubitemid 38316694)
    • (2004) Applied Microbiology and Biotechnology , vol.63 , Issue.6 , pp. 672-681
    • Kim, B.H.1    Park, H.S.2    Kim, H.J.3    Kim, G.T.4    Chang, I.S.5    Lee, J.6    Phung, N.T.7
  • 35
    • 19444374840 scopus 로고    scopus 로고
    • Continuous microbial fuel cells convert carbohydrates to electricity
    • K. Rabaey, W. Ossieur, M. Verhaege, and W. Verstraete Continuous microbial fuel cells convert carbohydrates to electricity Water Sci Technol 52 2005 515 523 (Pubitemid 41350308)
    • (2005) Water Science and Technology , vol.52 , Issue.1-2 , pp. 515-523
    • Rabaey, K.1    Ossieur, W.2    Verhaege, M.3    Verstraete, W.4
  • 36
    • 0037419705 scopus 로고    scopus 로고
    • Improved fuel cell and electrode designs for producing electricity from microbial degradation
    • D. Park, and J. Zeikus Improved fuel cell and electrode designs for producing electricity from microbial degradation Biotechnol Bioeng 81 2002 348 355
    • (2002) Biotechnol Bioeng , vol.81 , pp. 348-355
    • Park, D.1    Zeikus, J.2
  • 37
    • 20744456285 scopus 로고    scopus 로고
    • Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant
    • A. Rhoads, H. Beyenal, and Z. Lewandowski Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant Environ Sci Technol 39 2005 4666 4671
    • (2005) Environ Sci Technol , vol.39 , pp. 4666-4671
    • Rhoads, A.1    Beyenal, H.2    Lewandowski, Z.3
  • 38
    • 34848892124 scopus 로고    scopus 로고
    • Effect of initial carbon sources on the performance of a microbial fuel cell containing environmental microorganism micrococcus luteus
    • Y. Choi, E. Jung, H. Park, S. Jung, and S. Kim Effect of initial carbon sources on the performance of a microbial fuel cell containing environmental microorganism micrococcus luteus Bull Korean Chem Soc 28 2007 1591
    • (2007) Bull Korean Chem Soc , vol.28 , pp. 1591
    • Choi, Y.1    Jung, E.2    Park, H.3    Jung, S.4    Kim, S.5
  • 39
    • 33646030010 scopus 로고    scopus 로고
    • High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10
    • B.R. Ringeisen, E. Henderson, P.K. Wu, J. Pietron, R. Ray, and B. Little High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10 Environ Sci Technol 40 2006 2629 2634
    • (2006) Environ Sci Technol , vol.40 , pp. 2629-2634
    • Ringeisen, B.R.1    Henderson, E.2    Wu, P.K.3    Pietron, J.4    Ray, R.5    Little, B.6
  • 40
    • 0012111234 scopus 로고
    • Electricity generation by microorganisms
    • H. Bennetto Electricity generation by microorganisms Biotechnol 1 1990 163 168
    • (1990) Biotechnol , vol.1 , pp. 163-168
    • Bennetto, H.1
  • 41
    • 17744405443 scopus 로고    scopus 로고
    • A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude
    • DOI 10.1002/anie.200350918
    • U. Schröder, J. Nießen, and F. Scholz A generation of microbial fuel cell with current outputs boosted by more than one order of magnitude Angew Chem Int Ed 42 2003 2880 2883 (Pubitemid 36876605)
    • (2003) Angewandte Chemie - International Edition , vol.42 , Issue.25 , pp. 2880-2883
    • Schroder, U.1    Niessen, J.2    Scholz, F.3
  • 42
    • 18844440973 scopus 로고    scopus 로고
    • Comparative study of three types of microbial fuel cell
    • DOI 10.1016/j.enzmictec.2005.03.006, PII S0141022905001092
    • I. Ieropoulos, J. Greenman, C. Melhuish, and J. Hart Comparative study of three types of microbial fuel cell Enzyme Microb Technol 37 2005 238 245 (Pubitemid 40694065)
    • (2005) Enzyme and Microbial Technology , vol.37 , Issue.2 , pp. 238-245
    • Ieropoulos, I.A.1    Greenman, J.2    Melhuish, C.3    Hart, J.4
  • 43
    • 13844300190 scopus 로고    scopus 로고
    • Microbial fuel cells (MFCs) with interpolymer cation exchange membranes
    • M. Grzebyk, and G. Pozniak Microbial fuel cells (MFCs) with interpolymer cation exchange membranes Sep Purif Technol 41 2005 321 328
    • (2005) Sep Purif Technol , vol.41 , pp. 321-328
    • Grzebyk, M.1    Pozniak, G.2
  • 44
    • 33645214430 scopus 로고    scopus 로고
    • Development of bipolar plate stack type microbial fuel cells
    • S. Shin, Y. Choi, S. Na, S. Jung, and S. Kim Development of bipolar plate stack type microbial fuel cells Bull Korean Chem Soc 27 2006 281
    • (2006) Bull Korean Chem Soc , vol.27 , pp. 281
    • Shin, S.1    Choi, Y.2    Na, S.3    Jung, S.4    Kim, S.5
  • 45
    • 0021799472 scopus 로고
    • Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields
    • C. Thurston, H. Bennetto, G. Delaney, J. Mason, S. Roller, and J. Stirling Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields Microbiol 131 1985 1393
    • (1985) Microbiol , vol.131 , pp. 1393
    • Thurston, C.1    Bennetto, H.2    Delaney, G.3    Mason, J.4    Roller, S.5    Stirling, J.6
  • 46
    • 0022380696 scopus 로고
    • The sucrose fuel cell: Efficient biomass conversion using a microbial catalyst
    • DOI 10.1007/BF01032279
    • H. Bennetto, G. Delaney, J. Mason, S. Roller, J. Stirling, and C. Thurston The sucrose fuel cell: efficient biomass conversion using a microbial catalyst Biotechnol Lett 7 1985 699 704 (Pubitemid 16242311)
    • (1985) Biotechnology Letters , vol.7 , Issue.10 , pp. 699-704
    • Bennetto Delaney, H.P.G.M.1    Mason, J.R.2
  • 47
    • 0036320302 scopus 로고    scopus 로고
    • Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens
    • DOI 10.1007/s00253-002-0972-1
    • D. Park, and J. Zeikus Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnol 59 2002 58 61 (Pubitemid 34809676)
    • (2002) Applied Microbiology and Biotechnology , vol.59 , Issue.1 , pp. 58-61
    • Park, D.1    Zeikus, J.2
  • 48
    • 0037390947 scopus 로고    scopus 로고
    • Membrane fluidity sensoring microbial fuel cell
    • DOI 10.1016/S1567-5394(03)00018-5
    • Y. Choi, E. Jung, S. Kim, and S. Jung Membrane fluidity sensoring microbial fuel cell Bioelectrochem 59 2003 121 127 (Pubitemid 36434011)
    • (2003) Bioelectrochemistry , vol.59 , Issue.1-2 , pp. 121-127
    • Choi, Y.1    Jung, E.2    Kim, S.3    Jung, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.