메뉴 건너뛰기




Volumn 21, Issue 11, 2017, Pages 2896-2908

HIF-2α regulates non-canonical glutamine metabolism via activation of PI3K/mTORC2 pathway in human pancreatic ductal adenocarcinoma

Author keywords

HIF 2 ; non canonical glutamine metabolism; pancreatic ductal adenocarcinoma; pathway

Indexed keywords

ASPARTATE AMINOTRANSFERASE ISOENZYME 1; BETA ACTIN; GLUTAMINE; HYPOXIA INDUCIBLE FACTOR 2ALPHA; MAMMALIAN TARGET OF RAPAMYCIN; BASIC HELIX LOOP HELIX TRANSCRIPTION FACTOR; ENDOTHELIAL PAS DOMAIN-CONTAINING PROTEIN 1; GOT1 PROTEIN, HUMAN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; PHOSPHATIDYLINOSITOL 3 KINASE; SMALL INTERFERING RNA;

EID: 85019905604     PISSN: 15821838     EISSN: None     Source Type: Journal    
DOI: 10.1111/jcmm.13202     Document Type: Article
Times cited : (23)

References (35)
  • 2
    • 77951755278 scopus 로고    scopus 로고
    • Pancreatic cancer
    • Hidalgo M. Pancreatic cancer. N Engl J Med. 2010; 362: 1605–17.
    • (2010) N Engl J Med , vol.362 , pp. 1605-1617
    • Hidalgo, M.1
  • 3
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144: 646–74.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 4
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg O. On the origin of cancer cells. Science. 1956; 123: 309–14.
    • (1956) Science , vol.123 , pp. 309-314
    • Warburg, O.1
  • 5
    • 52649107626 scopus 로고    scopus 로고
    • Cancer cell metabolism: warburg and beyond
    • Hsu PP, Sabatini DM. Cancer cell metabolism: warburg and beyond. Cell. 2008; 134: 703–7.
    • (2008) Cell , vol.134 , pp. 703-707
    • Hsu, P.P.1    Sabatini, D.M.2
  • 6
    • 84875894714 scopus 로고    scopus 로고
    • Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
    • Son J, Lyssiotis CA, Ying H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013; 496: 101–5.
    • (2013) Nature , vol.496 , pp. 101-105
    • Son, J.1    Lyssiotis, C.A.2    Ying, H.3
  • 7
    • 84879766148 scopus 로고    scopus 로고
    • Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance
    • Lyssiotis CA, Son J, Cantley LC, et al. Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle. 2013; 12: 1987–8.
    • (2013) Cell Cycle , vol.12 , pp. 1987-1988
    • Lyssiotis, C.A.1    Son, J.2    Cantley, L.C.3
  • 8
    • 84897935083 scopus 로고    scopus 로고
    • Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies
    • Phan LM, Yeung SC, Lee MH. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med. 2014; 11: 1–19.
    • (2014) Cancer Biol Med , vol.11 , pp. 1-19
    • Phan, L.M.1    Yeung, S.C.2    Lee, M.H.3
  • 9
    • 27144478642 scopus 로고    scopus 로고
    • Insulin receptor substrate is a mediator of phosphoinositide 3-kinase activation in quiescent pancreatic cancer cells
    • Asano T, Yao Y, Shin S, et al. Insulin receptor substrate is a mediator of phosphoinositide 3-kinase activation in quiescent pancreatic cancer cells. Cancer Res. 2005; 65: 9164–8.
    • (2005) Cancer Res , vol.65 , pp. 9164-9168
    • Asano, T.1    Yao, Y.2    Shin, S.3
  • 10
    • 84876437832 scopus 로고    scopus 로고
    • Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer
    • Eser S, Reiff N, Messer M, et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell. 2013; 23: 406–20.
    • (2013) Cancer Cell , vol.23 , pp. 406-420
    • Eser, S.1    Reiff, N.2    Messer, M.3
  • 11
    • 17444400786 scopus 로고    scopus 로고
    • The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation
    • Asano T, Yao Y, Zhu J, et al. The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation. Biochem Biophys Res Commun. 2005; 331: 295–302.
    • (2005) Biochem Biophys Res Commun , vol.331 , pp. 295-302
    • Asano, T.1    Yao, Y.2    Zhu, J.3
  • 12
    • 41449091030 scopus 로고    scopus 로고
    • Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis
    • Pham NA, Schwock J, Iakovlev V, et al. Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis. BMC Cancer. 2008; 8: 43.
    • (2008) BMC Cancer , vol.8 , pp. 43
    • Pham, N.A.1    Schwock, J.2    Iakovlev, V.3
  • 13
    • 84894523716 scopus 로고    scopus 로고
    • Making new contacts: the mTOR network in metabolism and signalling crosstalk
    • Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014; 15: 155–62.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 155-162
    • Shimobayashi, M.1    Hall, M.N.2
  • 14
  • 15
    • 58049216350 scopus 로고    scopus 로고
    • Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2
    • Toschi A, Lee E, Gadir N, et al. Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J Biol Chem. 2008; 283: 34495–9.
    • (2008) J Biol Chem , vol.283 , pp. 34495-34499
    • Toschi, A.1    Lee, E.2    Gadir, N.3
  • 16
    • 84982187819 scopus 로고    scopus 로고
    • Dual PI3K/mTOR Inhibitors Induce Rapid Overactivation of the MEK/ERK Pathway in Human Pancreatic Cancer Cells through Suppression of mTORC2
    • Soares HP, Ming M, Mellon M, et al. Dual PI3K/mTOR Inhibitors Induce Rapid Overactivation of the MEK/ERK Pathway in Human Pancreatic Cancer Cells through Suppression of mTORC2. Mol Cancer Ther. 2015; 14: 1014–23.
    • (2015) Mol Cancer Ther , vol.14 , pp. 1014-1023
    • Soares, H.P.1    Ming, M.2    Mellon, M.3
  • 17
    • 84946593823 scopus 로고    scopus 로고
    • PI3K-mTORC2 but not PI3K-mTORC1 regulates transcription of HIF2A/EPAS1 and vascularization in neuroblastoma
    • Mohlin S, Hamidian A, von Stedingk K, et al. PI3K-mTORC2 but not PI3K-mTORC1 regulates transcription of HIF2A/EPAS1 and vascularization in neuroblastoma. Cancer Res. 2015; 75: 4617–28.
    • (2015) Cancer Res , vol.75 , pp. 4617-4628
    • Mohlin, S.1    Hamidian, A.2    von Stedingk, K.3
  • 18
    • 84939884427 scopus 로고    scopus 로고
    • mTORC1 drives HIF-1alpha and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3
    • Dodd KM, Yang J, Shen MH, et al. mTORC1 drives HIF-1alpha and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene. 2015; 34: 2239–50.
    • (2015) Oncogene , vol.34 , pp. 2239-2250
    • Dodd, K.M.1    Yang, J.2    Shen, M.H.3
  • 19
    • 68249093818 scopus 로고    scopus 로고
    • Targeting the phosphoinositide 3-kinase pathway in cancer
    • Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discovery. 2009; 8: 627–44.
    • (2009) Nat Rev Drug Discovery , vol.8 , pp. 627-644
    • Liu, P.1    Cheng, H.2    Roberts, T.M.3
  • 20
    • 84861707188 scopus 로고    scopus 로고
    • Hypoxia-driven pathways in bone development, regeneration and disease
    • Maes C, Carmeliet G, Schipani E. Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol. 2012; 8: 358–66.
    • (2012) Nat Rev Rheumatol , vol.8 , pp. 358-366
    • Maes, C.1    Carmeliet, G.2    Schipani, E.3
  • 21
    • 78649364332 scopus 로고    scopus 로고
    • Hypoxia-inducible factors and the response to hypoxic stress
    • Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010; 40: 294–309.
    • (2010) Mol Cell , vol.40 , pp. 294-309
    • Majmundar, A.J.1    Wong, W.J.2    Simon, M.C.3
  • 22
    • 84894412911 scopus 로고    scopus 로고
    • HAF drives the switch of HIF-1α to HIF-2α by activating the NF-κB pathway, leading to malignant behavior of T24 bladder cancer cells
    • Fan J. HAF drives the switch of HIF-1α to HIF-2α by activating the NF-κB pathway, leading to malignant behavior of T24 bladder cancer cells. Int J Oncol. 2014; 44: 393–402.
    • (2014) Int J Oncol , vol.44 , pp. 393-402
    • Fan, J.1
  • 23
    • 0033870281 scopus 로고    scopus 로고
    • The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages
    • Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 2000; 157: 411–21.
    • (2000) Am J Pathol , vol.157 , pp. 411-421
    • Talks, K.L.1    Turley, H.2    Gatter, K.C.3
  • 24
    • 84865429409 scopus 로고    scopus 로고
    • Passing the baton: the HIF switch
    • Koh MY, Powis G. Passing the baton: the HIF switch. Trends Biochem Sci. 2012; 37: 364–72.
    • (2012) Trends Biochem Sci , vol.37 , pp. 364-372
    • Koh, M.Y.1    Powis, G.2
  • 25
    • 84982813040 scopus 로고    scopus 로고
    • MiR-4638-5p inhibits castration resistance of prostate cancer through repressing Kidins220 expression and PI3K/AKT pathway activity
    • Wang Y, Shao N, Mao X, et al. MiR-4638-5p inhibits castration resistance of prostate cancer through repressing Kidins220 expression and PI3K/AKT pathway activity. Oncotarget. 2016; 7: 47444–64.
    • (2016) Oncotarget , vol.7 , pp. 47444-47464
    • Wang, Y.1    Shao, N.2    Mao, X.3
  • 26
    • 84883501150 scopus 로고    scopus 로고
    • HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
    • Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013; 123: 3664–71.
    • (2013) J Clin Invest , vol.123 , pp. 3664-3671
    • Semenza, G.L.1
  • 27
    • 84874614138 scopus 로고    scopus 로고
    • Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma
    • Guillaumond F, Leca J, Olivares O, et al. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci USA. 2013; 110: 3919–24.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 3919-3924
    • Guillaumond, F.1    Leca, J.2    Olivares, O.3
  • 29
    • 84938267002 scopus 로고    scopus 로고
    • Targeting cancer cell metabolism in pancreatic adenocarcinoma
    • Cohen R, Neuzillet C, Tijeras-Raballand A, et al. Targeting cancer cell metabolism in pancreatic adenocarcinoma. Oncotarget. 2015; 6: 16832–47.
    • (2015) Oncotarget , vol.6 , pp. 16832-16847
    • Cohen, R.1    Neuzillet, C.2    Tijeras-Raballand, A.3
  • 30
    • 39749114978 scopus 로고    scopus 로고
    • Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability
    • Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008; 8: 180–92.
    • (2008) Nat Rev Cancer , vol.8 , pp. 180-192
    • Bristow, R.G.1    Hill, R.P.2
  • 31
    • 84883490063 scopus 로고    scopus 로고
    • Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis
    • Semenza GL. Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene. 2013; 32: 4057–63.
    • (2013) Oncogene , vol.32 , pp. 4057-4063
    • Semenza, G.L.1
  • 32
    • 84923872916 scopus 로고    scopus 로고
    • Metabolic phenotypes in pancreatic cancer
    • Yu M, Zhou Q, Zhou Y, et al. Metabolic phenotypes in pancreatic cancer. PLoS One. 2015; 10: e0115153.
    • (2015) PLoS One , vol.10
    • Yu, M.1    Zhou, Q.2    Zhou, Y.3
  • 33
    • 52149123619 scopus 로고    scopus 로고
    • Core signaling pathways in human pancreatic cancers revealed by global genomic analyses
    • Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008; 321: 1801–6.
    • (2008) Science , vol.321 , pp. 1801-1806
    • Jones, S.1    Zhang, X.2    Parsons, D.W.3
  • 34
    • 79958807263 scopus 로고    scopus 로고
    • Molecular signatures of pancreatic cancer
    • Hong SM, Park JY, Hruban RH, et al. Molecular signatures of pancreatic cancer. Arch Pathol Lab Med. 2011; 135: 716–27.
    • (2011) Arch Pathol Lab Med , vol.135 , pp. 716-727
    • Hong, S.M.1    Park, J.Y.2    Hruban, R.H.3
  • 35
    • 31144454066 scopus 로고    scopus 로고
    • Key cancer cell signal transduction pathways as therapeutic targets
    • Bianco R, Melisi D, Ciardiello F, et al. Key cancer cell signal transduction pathways as therapeutic targets. Eur J Cancer. 2006; 42: 290–4.
    • (2006) Eur J Cancer , vol.42 , pp. 290-294
    • Bianco, R.1    Melisi, D.2    Ciardiello, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.