-
2
-
-
77951755278
-
Pancreatic cancer
-
Hidalgo M. Pancreatic cancer. N Engl J Med. 2010; 362: 1605–17.
-
(2010)
N Engl J Med
, vol.362
, pp. 1605-1617
-
-
Hidalgo, M.1
-
3
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144: 646–74.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
4
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science. 1956; 123: 309–14.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
5
-
-
52649107626
-
Cancer cell metabolism: warburg and beyond
-
Hsu PP, Sabatini DM. Cancer cell metabolism: warburg and beyond. Cell. 2008; 134: 703–7.
-
(2008)
Cell
, vol.134
, pp. 703-707
-
-
Hsu, P.P.1
Sabatini, D.M.2
-
6
-
-
84875894714
-
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
-
Son J, Lyssiotis CA, Ying H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013; 496: 101–5.
-
(2013)
Nature
, vol.496
, pp. 101-105
-
-
Son, J.1
Lyssiotis, C.A.2
Ying, H.3
-
7
-
-
84879766148
-
Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance
-
Lyssiotis CA, Son J, Cantley LC, et al. Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle. 2013; 12: 1987–8.
-
(2013)
Cell Cycle
, vol.12
, pp. 1987-1988
-
-
Lyssiotis, C.A.1
Son, J.2
Cantley, L.C.3
-
8
-
-
84897935083
-
Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies
-
Phan LM, Yeung SC, Lee MH. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med. 2014; 11: 1–19.
-
(2014)
Cancer Biol Med
, vol.11
, pp. 1-19
-
-
Phan, L.M.1
Yeung, S.C.2
Lee, M.H.3
-
9
-
-
27144478642
-
Insulin receptor substrate is a mediator of phosphoinositide 3-kinase activation in quiescent pancreatic cancer cells
-
Asano T, Yao Y, Shin S, et al. Insulin receptor substrate is a mediator of phosphoinositide 3-kinase activation in quiescent pancreatic cancer cells. Cancer Res. 2005; 65: 9164–8.
-
(2005)
Cancer Res
, vol.65
, pp. 9164-9168
-
-
Asano, T.1
Yao, Y.2
Shin, S.3
-
10
-
-
84876437832
-
Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer
-
Eser S, Reiff N, Messer M, et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell. 2013; 23: 406–20.
-
(2013)
Cancer Cell
, vol.23
, pp. 406-420
-
-
Eser, S.1
Reiff, N.2
Messer, M.3
-
11
-
-
17444400786
-
The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation
-
Asano T, Yao Y, Zhu J, et al. The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation. Biochem Biophys Res Commun. 2005; 331: 295–302.
-
(2005)
Biochem Biophys Res Commun
, vol.331
, pp. 295-302
-
-
Asano, T.1
Yao, Y.2
Zhu, J.3
-
12
-
-
41449091030
-
Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis
-
Pham NA, Schwock J, Iakovlev V, et al. Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis. BMC Cancer. 2008; 8: 43.
-
(2008)
BMC Cancer
, vol.8
, pp. 43
-
-
Pham, N.A.1
Schwock, J.2
Iakovlev, V.3
-
13
-
-
84894523716
-
Making new contacts: the mTOR network in metabolism and signalling crosstalk
-
Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014; 15: 155–62.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 155-162
-
-
Shimobayashi, M.1
Hall, M.N.2
-
15
-
-
58049216350
-
Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2
-
Toschi A, Lee E, Gadir N, et al. Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J Biol Chem. 2008; 283: 34495–9.
-
(2008)
J Biol Chem
, vol.283
, pp. 34495-34499
-
-
Toschi, A.1
Lee, E.2
Gadir, N.3
-
16
-
-
84982187819
-
Dual PI3K/mTOR Inhibitors Induce Rapid Overactivation of the MEK/ERK Pathway in Human Pancreatic Cancer Cells through Suppression of mTORC2
-
Soares HP, Ming M, Mellon M, et al. Dual PI3K/mTOR Inhibitors Induce Rapid Overactivation of the MEK/ERK Pathway in Human Pancreatic Cancer Cells through Suppression of mTORC2. Mol Cancer Ther. 2015; 14: 1014–23.
-
(2015)
Mol Cancer Ther
, vol.14
, pp. 1014-1023
-
-
Soares, H.P.1
Ming, M.2
Mellon, M.3
-
17
-
-
84946593823
-
PI3K-mTORC2 but not PI3K-mTORC1 regulates transcription of HIF2A/EPAS1 and vascularization in neuroblastoma
-
Mohlin S, Hamidian A, von Stedingk K, et al. PI3K-mTORC2 but not PI3K-mTORC1 regulates transcription of HIF2A/EPAS1 and vascularization in neuroblastoma. Cancer Res. 2015; 75: 4617–28.
-
(2015)
Cancer Res
, vol.75
, pp. 4617-4628
-
-
Mohlin, S.1
Hamidian, A.2
von Stedingk, K.3
-
18
-
-
84939884427
-
mTORC1 drives HIF-1alpha and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3
-
Dodd KM, Yang J, Shen MH, et al. mTORC1 drives HIF-1alpha and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene. 2015; 34: 2239–50.
-
(2015)
Oncogene
, vol.34
, pp. 2239-2250
-
-
Dodd, K.M.1
Yang, J.2
Shen, M.H.3
-
19
-
-
68249093818
-
Targeting the phosphoinositide 3-kinase pathway in cancer
-
Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discovery. 2009; 8: 627–44.
-
(2009)
Nat Rev Drug Discovery
, vol.8
, pp. 627-644
-
-
Liu, P.1
Cheng, H.2
Roberts, T.M.3
-
20
-
-
84861707188
-
Hypoxia-driven pathways in bone development, regeneration and disease
-
Maes C, Carmeliet G, Schipani E. Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol. 2012; 8: 358–66.
-
(2012)
Nat Rev Rheumatol
, vol.8
, pp. 358-366
-
-
Maes, C.1
Carmeliet, G.2
Schipani, E.3
-
21
-
-
78649364332
-
Hypoxia-inducible factors and the response to hypoxic stress
-
Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010; 40: 294–309.
-
(2010)
Mol Cell
, vol.40
, pp. 294-309
-
-
Majmundar, A.J.1
Wong, W.J.2
Simon, M.C.3
-
22
-
-
84894412911
-
HAF drives the switch of HIF-1α to HIF-2α by activating the NF-κB pathway, leading to malignant behavior of T24 bladder cancer cells
-
Fan J. HAF drives the switch of HIF-1α to HIF-2α by activating the NF-κB pathway, leading to malignant behavior of T24 bladder cancer cells. Int J Oncol. 2014; 44: 393–402.
-
(2014)
Int J Oncol
, vol.44
, pp. 393-402
-
-
Fan, J.1
-
23
-
-
0033870281
-
The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages
-
Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 2000; 157: 411–21.
-
(2000)
Am J Pathol
, vol.157
, pp. 411-421
-
-
Talks, K.L.1
Turley, H.2
Gatter, K.C.3
-
24
-
-
84865429409
-
Passing the baton: the HIF switch
-
Koh MY, Powis G. Passing the baton: the HIF switch. Trends Biochem Sci. 2012; 37: 364–72.
-
(2012)
Trends Biochem Sci
, vol.37
, pp. 364-372
-
-
Koh, M.Y.1
Powis, G.2
-
25
-
-
84982813040
-
MiR-4638-5p inhibits castration resistance of prostate cancer through repressing Kidins220 expression and PI3K/AKT pathway activity
-
Wang Y, Shao N, Mao X, et al. MiR-4638-5p inhibits castration resistance of prostate cancer through repressing Kidins220 expression and PI3K/AKT pathway activity. Oncotarget. 2016; 7: 47444–64.
-
(2016)
Oncotarget
, vol.7
, pp. 47444-47464
-
-
Wang, Y.1
Shao, N.2
Mao, X.3
-
26
-
-
84883501150
-
HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
-
Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013; 123: 3664–71.
-
(2013)
J Clin Invest
, vol.123
, pp. 3664-3671
-
-
Semenza, G.L.1
-
27
-
-
84874614138
-
Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma
-
Guillaumond F, Leca J, Olivares O, et al. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci USA. 2013; 110: 3919–24.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 3919-3924
-
-
Guillaumond, F.1
Leca, J.2
Olivares, O.3
-
29
-
-
84938267002
-
Targeting cancer cell metabolism in pancreatic adenocarcinoma
-
Cohen R, Neuzillet C, Tijeras-Raballand A, et al. Targeting cancer cell metabolism in pancreatic adenocarcinoma. Oncotarget. 2015; 6: 16832–47.
-
(2015)
Oncotarget
, vol.6
, pp. 16832-16847
-
-
Cohen, R.1
Neuzillet, C.2
Tijeras-Raballand, A.3
-
30
-
-
39749114978
-
Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability
-
Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008; 8: 180–92.
-
(2008)
Nat Rev Cancer
, vol.8
, pp. 180-192
-
-
Bristow, R.G.1
Hill, R.P.2
-
31
-
-
84883490063
-
Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis
-
Semenza GL. Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene. 2013; 32: 4057–63.
-
(2013)
Oncogene
, vol.32
, pp. 4057-4063
-
-
Semenza, G.L.1
-
32
-
-
84923872916
-
Metabolic phenotypes in pancreatic cancer
-
Yu M, Zhou Q, Zhou Y, et al. Metabolic phenotypes in pancreatic cancer. PLoS One. 2015; 10: e0115153.
-
(2015)
PLoS One
, vol.10
-
-
Yu, M.1
Zhou, Q.2
Zhou, Y.3
-
33
-
-
52149123619
-
Core signaling pathways in human pancreatic cancers revealed by global genomic analyses
-
Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008; 321: 1801–6.
-
(2008)
Science
, vol.321
, pp. 1801-1806
-
-
Jones, S.1
Zhang, X.2
Parsons, D.W.3
-
35
-
-
31144454066
-
Key cancer cell signal transduction pathways as therapeutic targets
-
Bianco R, Melisi D, Ciardiello F, et al. Key cancer cell signal transduction pathways as therapeutic targets. Eur J Cancer. 2006; 42: 290–4.
-
(2006)
Eur J Cancer
, vol.42
, pp. 290-294
-
-
Bianco, R.1
Melisi, D.2
Ciardiello, F.3
|