메뉴 건너뛰기




Volumn 10, Issue , 2010, Pages

Comparison of techniques for handling missing covariate data within prognostic modelling studies: A simulation study

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BREAST TUMOR; COMPARATIVE STUDY; COMPUTER SIMULATION; EPIDEMIOLOGY; FEMALE; HUMAN; METHODOLOGY; MULTIVARIATE ANALYSIS; PROPORTIONAL HAZARDS MODEL; STATISTICAL ANALYSIS;

EID: 77249126457     PISSN: None     EISSN: 14712288     Source Type: Journal    
DOI: 10.1186/1471-2288-10-7     Document Type: Article
Times cited : (185)

References (44)
  • 1
    • 3343019343 scopus 로고    scopus 로고
    • Missing covariate data within cancer prognostic studies: A review of current reporting and proposed guidelines
    • 10.1038/sj.bjc.6601907. 15188004
    • Missing covariate data within cancer prognostic studies: a review of current reporting and proposed guidelines. A Burton DG Altman, British Journal of Cancer 2004 91 1 4 8 10.1038/sj.bjc.6601907 15188004
    • (2004) British Journal of Cancer , vol.91 , Issue.1 , pp. 4-8
    • Burton, A.1    Altman, D.G.2
  • 3
    • 0037470266 scopus 로고    scopus 로고
    • Bias due to missing exposure data using complete-case analysis in the proportional hazards regression model
    • 10.1002/sim.1340. 12590413
    • Bias due to missing exposure data using complete-case analysis in the proportional hazards regression model. S Demissie MP LaValley NJ Horton RJ Glynn LA Cupples, Statistics in Medicine 2003 22 4 545 557 10.1002/sim.1340 12590413
    • (2003) Statistics in Medicine , vol.22 , Issue.4 , pp. 545-557
    • Demissie, S.1    Lavalley, M.P.2    Horton, N.J.3    Glynn, R.J.4    Cupples, L.A.5
  • 4
    • 0030323076 scopus 로고    scopus 로고
    • Using the EM-algorithm for survival data with incomplete categorical covariates
    • 10.1007/BF00128467. 9384645
    • Using the EM-algorithm for survival data with incomplete categorical covariates. SR Lipsitz JG Ibrahim, Lifetime Data Analysis 1996 2 1 5 14 10.1007/BF00128467 9384645
    • (1996) Lifetime Data Analysis , vol.2 , Issue.1 , pp. 5-14
    • Lipsitz, S.R.1    Ibrahim, J.G.2
  • 5
    • 0031708309 scopus 로고    scopus 로고
    • Estimating equations with incomplete categorical covariates in the Cox model
    • 10.2307/2533852. 9750248
    • Estimating equations with incomplete categorical covariates in the Cox model. SR Lipsitz JG Ibrahim, Biometrics 1998 54 3 1002 1013 10.2307/2533852 9750248
    • (1998) Biometrics , vol.54 , Issue.3 , pp. 1002-1013
    • Lipsitz, S.R.1    Ibrahim, J.G.2
  • 6
    • 0033074989 scopus 로고    scopus 로고
    • Maximum likelihood estimation for linear regression models with right censored outcomes and missing predictors
    • 10.1016/S0167-9473(98)00074-7
    • Maximum likelihood estimation for linear regression models with right censored outcomes and missing predictors. XL Meng N Schenker, Computational Statistics & Data Analysis 1999 29 4 471 483 10.1016/S0167-9473(98)00074-7
    • (1999) Computational Statistics & Data Analysis , vol.29 , Issue.4 , pp. 471-483
    • Meng, X.L.1    Schenker, N.2
  • 9
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • 10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R. 10204197
    • Multiple imputation of missing blood pressure covariates in survival analysis. S van Buuren HC Boshuizen DL Knook, Statistics in Medicine 1999 18 6 681 694 10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R 10204197
    • (1999) Statistics in Medicine , vol.18 , Issue.6 , pp. 681-694
    • Van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 10
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • Multiple-imputation inferences with uncongenial sources of input. XL Meng, Statistical Science 1994 9 4 538 558
    • (1994) Statistical Science , vol.9 , Issue.4 , pp. 538-558
    • Meng, X.L.1
  • 12
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • 10.1037/1082-989X.7.2.147. 12090408
    • Missing data: our view of the state of the art. JL Schafer JW Graham, Psychological Methods 2002 7 2 147 177 10.1037/1082-989X.7.2.147 12090408
    • (2002) Psychological Methods , vol.7 , Issue.2 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 14
    • 0030207783 scopus 로고    scopus 로고
    • Partially parametric techniques for multiple imputation
    • 10.1016/0167-9473(95)00057-7
    • Partially parametric techniques for multiple imputation. N Schenker JMG Taylor, Computational Statistics & Data Analysis 1996 22 4 425 446 10.1016/0167-9473(95)00057-7
    • (1996) Computational Statistics & Data Analysis , vol.22 , Issue.4 , pp. 425-446
    • Schenker, N.1    Taylor, J.M.G.2
  • 15
    • 0036143380 scopus 로고    scopus 로고
    • Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses
    • 10.1016/S0895-4356(01)00433-4. 11809357
    • Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses. PD Faris WA Ghali R Brant CM Norris PD Galbraith ML Knudtson, Journal of Clinical Epidemiology 2002 55 2 184 191 10.1016/S0895-4356(01)00433-4 11809357
    • (2002) Journal of Clinical Epidemiology , vol.55 , Issue.2 , pp. 184-191
    • Faris, P.D.1    Ghali, W.A.2    Brant, R.3    Norris, C.M.4    Galbraith, P.D.5    Knudtson, M.L.6
  • 16
    • 0029584587 scopus 로고
    • A critical look at methods for handling missing covariates in epidemiologic regression analyses
    • 7503045
    • A critical look at methods for handling missing covariates in epidemiologic regression analyses. S Greenland WD Finkle, American Journal of Epidemiology 1995 142 12 1255 1264 7503045
    • (1995) American Journal of Epidemiology , vol.142 , Issue.12 , pp. 1255-1264
    • Greenland, S.1    Finkle, W.D.2
  • 17
    • 0035998837 scopus 로고    scopus 로고
    • Double-semiparametric method for missing covariates in Cox regression models
    • 10.1198/016214502760047096
    • Double-semiparametric method for missing covariates in Cox regression models. HY Chen, Journal of the American Statistical Association 2002 97 458 565 576 10.1198/016214502760047096
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.458 , pp. 565-576
    • Chen, H.Y.1
  • 18
    • 2342659697 scopus 로고    scopus 로고
    • Non-ignorable missing covariate data in survival analysis: A case-study of an International Breast Cancer Study Group trial
    • DOI 10.1046/j.1467-9876.2003.05168.x
    • Non-ignorable missing covariate data in survival analysis: a case-study of an International Breast Cancer Study Group trial. AH Herring JG Ibrahim SR Lipsitz, Journal of the Royal Statistical Society Series C-Applied Statistics 2004 53 2 293 310 10.1046/j.1467-9876.2003.05168.x (Pubitemid 38597505)
    • (2004) Journal of the Royal Statistical Society. Series C: Applied Statistics , vol.53 , Issue.2 , pp. 293-310
    • Herring, A.H.1    Ibrahim, J.G.2    Lipsitz, S.R.3
  • 21
    • 3042807973 scopus 로고    scopus 로고
    • Imputations of missing values in practice: Results from imputations of serum cholesterol in 28 cohort studies
    • 10.1093/aje/kwh175. 15229115
    • Imputations of missing values in practice: Results from imputations of serum cholesterol in 28 cohort studies. F Barzi M Woodward, American Journal of Epidemiology 2004 160 1 34 45 10.1093/aje/kwh175 15229115
    • (2004) American Journal of Epidemiology , vol.160 , Issue.1 , pp. 34-45
    • Barzi, F.1    Woodward, M.2
  • 23
    • 1842607847 scopus 로고    scopus 로고
    • R Development Core Team, Vienna, Austria: R Foundation for Statistical Computing
    • R: A language and environment for statistical computing. R Development Core Team, Vienna, Austria: R Foundation for Statistical Computing 2004
    • (2004) R: A Language and Environment for Statistical Computing
  • 24
    • 0033067540 scopus 로고    scopus 로고
    • Modelling the effects of standard prognostic factors in node-positive breast cancer. German Breast Cancer Study Group (GBSG)
    • 10.1038/sj.bjc.6690279. 10206288
    • Modelling the effects of standard prognostic factors in node-positive breast cancer. German Breast Cancer Study Group (GBSG). W Sauerbrei P Royston H Bojar C Schmoor M Schumacher, British Journal of Cancer 1999 79 11-12 1752 1760 10.1038/sj.bjc.6690279 10206288
    • (1999) British Journal of Cancer , vol.79 , Issue.11-12 , pp. 1752-1760
    • Sauerbrei, W.1    Royston, P.2    Bojar, H.3    Schmoor, C.4    Schumacher, M.5
  • 25
    • 33845891920 scopus 로고    scopus 로고
    • The design of simulation studies in medical statistics
    • 10.1002/sim.2673. 16947139
    • The design of simulation studies in medical statistics. A Burton DG Altman P Royston RL Holder, Statistics in Medicine 2006 25 24 4279 4292 10.1002/sim.2673 16947139
    • (2006) Statistics in Medicine , vol.25 , Issue.24 , pp. 4279-4292
    • Burton, A.1    Altman, D.G.2    Royston, P.3    Holder, R.L.4
  • 26
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • 10.1002/sim.2059. 15724232
    • Generating survival times to simulate Cox proportional hazards models. R Bender T Augustin M Blettner, Statistics in Medicine 2005 24 11 1713 1723 10.1002/sim.2059 15724232
    • (2005) Statistics in Medicine , vol.24 , Issue.11 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 28
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • 11778676
    • A comparison of inclusive and restrictive strategies in modern missing data procedures. LM Collins JL Schafer CM Kam, Psychological Methods 2001 6 4 330 351 11778676
    • (2001) Psychological Methods , vol.6 , Issue.4 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.M.3
  • 29
    • 1442351098 scopus 로고    scopus 로고
    • A new measure of prognostic separation in survival data
    • 10.1002/sim.1621. 14981672
    • A new measure of prognostic separation in survival data. P Royston W Sauerbrei, Statistics in Medicine 2004 23 5 723 748 10.1002/sim.1621 14981672
    • (2004) Statistics in Medicine , vol.23 , Issue.5 , pp. 723-748
    • Royston, P.1    Sauerbrei, W.2
  • 30
    • 0346072211 scopus 로고    scopus 로고
    • Adjusting regression attenuation in the Cox proportional hazards model
    • 10.1016/S0378-3758(98)00178-5
    • Adjusting regression attenuation in the Cox proportional hazards model. FH Kong, Journal of Statistical Planning and Inference 1999 79 1 31 44 10.1016/S0378-3758(98)00178-5
    • (1999) Journal of Statistical Planning and Inference , vol.79 , Issue.1 , pp. 31-44
    • Kong, F.H.1
  • 32
    • 69049098269 scopus 로고    scopus 로고
    • Combining estimates of interest in prognostic modelling studies after multiple imputation: Current practice and guidelines
    • 10.1186/1471-2288-9-57. 19638200
    • Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines. A Marshall D Altman R Holder P Royston, BMC Medical Research Methodology 2009 9 1 57 10.1186/1471-2288-9-57 19638200
    • (2009) BMC Medical Research Methodology , vol.9 , Issue.1 , pp. 57
    • Marshall, A.1    Altman, D.2    Holder, R.3    Royston, P.4
  • 33
    • 0040630186 scopus 로고
    • Significance levels from repeated p-values with multiply-imputed data
    • Significance levels from repeated p-values with multiply-imputed data. KH Li XL Meng TE Raghunathan DB Rubin, Statistica Sinica 1991 1 1 65 92
    • (1991) Statistica Sinica , vol.1 , Issue.1 , pp. 65-92
    • Li, K.H.1    Meng, X.L.2    Raghunathan, T.E.3    Rubin, D.B.4
  • 34
    • 48249126832 scopus 로고    scopus 로고
    • How should variable selection be performed with multiply imputed data?
    • 10.1002/sim.3177. 18203127
    • How should variable selection be performed with multiply imputed data? AM Wood IR White P Royston, Statistics in Medicine 2008 27 17 3227 3246 10.1002/sim.3177 18203127
    • (2008) Statistics in Medicine , vol.27 , Issue.17 , pp. 3227-3246
    • Wood, A.M.1    White, I.R.2    Royston, P.3
  • 35
    • 0025801348 scopus 로고
    • Multiple imputation in health-care databases: An overview and some applications
    • 10.1002/sim.4780100410. 2057657
    • Multiple imputation in health-care databases: an overview and some applications. DB Rubin N Schenker, Statistics in Medicine 1991 10 4 585 598 10.1002/sim.4780100410 2057657
    • (1991) Statistics in Medicine , vol.10 , Issue.4 , pp. 585-598
    • Rubin, D.B.1    Schenker, N.2
  • 36
    • 21844466220 scopus 로고    scopus 로고
    • A comparison of imputation methods in a longitudinal randomized clinical trial
    • 10.1002/sim.2099. 15889392
    • A comparison of imputation methods in a longitudinal randomized clinical trial. LQ Tang JW Song TR Belin J Unutzer, Statistics in Medicine 2005 24 14 2111 2128 10.1002/sim.2099 15889392
    • (2005) Statistics in Medicine , vol.24 , Issue.14 , pp. 2111-2128
    • Tang, L.Q.1    Song, J.W.2    Belin, T.R.3    Unutzer, J.4
  • 37
  • 39
    • 0242710940 scopus 로고    scopus 로고
    • A potential for bias when rounding in multiple imputation
    • 10.1198/0003130032314
    • A potential for bias when rounding in multiple imputation. NJ Horton SR Lipsitz M Parzen, American Statistician 2003 57 4 229 232 10.1198/0003130032314
    • (2003) American Statistician , vol.57 , Issue.4 , pp. 229-232
    • Horton, N.J.1    Lipsitz, S.R.2    Parzen, M.3
  • 40
    • 69949108828 scopus 로고    scopus 로고
    • Imputing missing covariate values for the Cox model
    • 10.1002/sim.3618. 19452569
    • Imputing missing covariate values for the Cox model. I White P Royston, Statistics in Medicine 2009 28 15 1982 1998 10.1002/sim.3618 19452569
    • (2009) Statistics in Medicine , vol.28 , Issue.15 , pp. 1982-1998
    • White, I.1    Royston, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.