-
1
-
-
3343019343
-
Missing covariate data within cancer prognostic studies: A review of current reporting and proposed guidelines
-
10.1038/sj.bjc.6601907. 15188004
-
Missing covariate data within cancer prognostic studies: a review of current reporting and proposed guidelines. A Burton DG Altman, British Journal of Cancer 2004 91 1 4 8 10.1038/sj.bjc.6601907 15188004
-
(2004)
British Journal of Cancer
, vol.91
, Issue.1
, pp. 4-8
-
-
Burton, A.1
Altman, D.G.2
-
3
-
-
0037470266
-
Bias due to missing exposure data using complete-case analysis in the proportional hazards regression model
-
10.1002/sim.1340. 12590413
-
Bias due to missing exposure data using complete-case analysis in the proportional hazards regression model. S Demissie MP LaValley NJ Horton RJ Glynn LA Cupples, Statistics in Medicine 2003 22 4 545 557 10.1002/sim.1340 12590413
-
(2003)
Statistics in Medicine
, vol.22
, Issue.4
, pp. 545-557
-
-
Demissie, S.1
Lavalley, M.P.2
Horton, N.J.3
Glynn, R.J.4
Cupples, L.A.5
-
4
-
-
0030323076
-
Using the EM-algorithm for survival data with incomplete categorical covariates
-
10.1007/BF00128467. 9384645
-
Using the EM-algorithm for survival data with incomplete categorical covariates. SR Lipsitz JG Ibrahim, Lifetime Data Analysis 1996 2 1 5 14 10.1007/BF00128467 9384645
-
(1996)
Lifetime Data Analysis
, vol.2
, Issue.1
, pp. 5-14
-
-
Lipsitz, S.R.1
Ibrahim, J.G.2
-
5
-
-
0031708309
-
Estimating equations with incomplete categorical covariates in the Cox model
-
10.2307/2533852. 9750248
-
Estimating equations with incomplete categorical covariates in the Cox model. SR Lipsitz JG Ibrahim, Biometrics 1998 54 3 1002 1013 10.2307/2533852 9750248
-
(1998)
Biometrics
, vol.54
, Issue.3
, pp. 1002-1013
-
-
Lipsitz, S.R.1
Ibrahim, J.G.2
-
6
-
-
0033074989
-
Maximum likelihood estimation for linear regression models with right censored outcomes and missing predictors
-
10.1016/S0167-9473(98)00074-7
-
Maximum likelihood estimation for linear regression models with right censored outcomes and missing predictors. XL Meng N Schenker, Computational Statistics & Data Analysis 1999 29 4 471 483 10.1016/S0167-9473(98)00074-7
-
(1999)
Computational Statistics & Data Analysis
, vol.29
, Issue.4
, pp. 471-483
-
-
Meng, X.L.1
Schenker, N.2
-
9
-
-
0033616909
-
Multiple imputation of missing blood pressure covariates in survival analysis
-
10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R. 10204197
-
Multiple imputation of missing blood pressure covariates in survival analysis. S van Buuren HC Boshuizen DL Knook, Statistics in Medicine 1999 18 6 681 694 10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R 10204197
-
(1999)
Statistics in Medicine
, vol.18
, Issue.6
, pp. 681-694
-
-
Van Buuren, S.1
Boshuizen, H.C.2
Knook, D.L.3
-
10
-
-
84972537494
-
Multiple-imputation inferences with uncongenial sources of input
-
Multiple-imputation inferences with uncongenial sources of input. XL Meng, Statistical Science 1994 9 4 538 558
-
(1994)
Statistical Science
, vol.9
, Issue.4
, pp. 538-558
-
-
Meng, X.L.1
-
12
-
-
85047673373
-
Missing data: Our view of the state of the art
-
10.1037/1082-989X.7.2.147. 12090408
-
Missing data: our view of the state of the art. JL Schafer JW Graham, Psychological Methods 2002 7 2 147 177 10.1037/1082-989X.7.2.147 12090408
-
(2002)
Psychological Methods
, vol.7
, Issue.2
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
13
-
-
33646700878
-
The NHANES III multiple imputation project
-
The NHANES III multiple imputation project. J Schafer T Ezzati-Rice W Johnson M Khare R Little D Rubin, Proceedings of the Survey Research Methods Section of the American Statistical Association. Chicago, Illnois 1996 28 37
-
(1996)
Proceedings of the Survey Research Methods Section of the American Statistical Association. Chicago, Illnois
, pp. 28-37
-
-
Schafer, J.1
Ezzati-Rice, T.2
Johnson, W.3
Khare, M.4
Little, R.5
Rubin, D.6
-
14
-
-
0030207783
-
Partially parametric techniques for multiple imputation
-
10.1016/0167-9473(95)00057-7
-
Partially parametric techniques for multiple imputation. N Schenker JMG Taylor, Computational Statistics & Data Analysis 1996 22 4 425 446 10.1016/0167-9473(95)00057-7
-
(1996)
Computational Statistics & Data Analysis
, vol.22
, Issue.4
, pp. 425-446
-
-
Schenker, N.1
Taylor, J.M.G.2
-
15
-
-
0036143380
-
Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses
-
10.1016/S0895-4356(01)00433-4. 11809357
-
Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses. PD Faris WA Ghali R Brant CM Norris PD Galbraith ML Knudtson, Journal of Clinical Epidemiology 2002 55 2 184 191 10.1016/S0895-4356(01)00433-4 11809357
-
(2002)
Journal of Clinical Epidemiology
, vol.55
, Issue.2
, pp. 184-191
-
-
Faris, P.D.1
Ghali, W.A.2
Brant, R.3
Norris, C.M.4
Galbraith, P.D.5
Knudtson, M.L.6
-
16
-
-
0029584587
-
A critical look at methods for handling missing covariates in epidemiologic regression analyses
-
7503045
-
A critical look at methods for handling missing covariates in epidemiologic regression analyses. S Greenland WD Finkle, American Journal of Epidemiology 1995 142 12 1255 1264 7503045
-
(1995)
American Journal of Epidemiology
, vol.142
, Issue.12
, pp. 1255-1264
-
-
Greenland, S.1
Finkle, W.D.2
-
17
-
-
0035998837
-
Double-semiparametric method for missing covariates in Cox regression models
-
10.1198/016214502760047096
-
Double-semiparametric method for missing covariates in Cox regression models. HY Chen, Journal of the American Statistical Association 2002 97 458 565 576 10.1198/016214502760047096
-
(2002)
Journal of the American Statistical Association
, vol.97
, Issue.458
, pp. 565-576
-
-
Chen, H.Y.1
-
18
-
-
2342659697
-
Non-ignorable missing covariate data in survival analysis: A case-study of an International Breast Cancer Study Group trial
-
DOI 10.1046/j.1467-9876.2003.05168.x
-
Non-ignorable missing covariate data in survival analysis: a case-study of an International Breast Cancer Study Group trial. AH Herring JG Ibrahim SR Lipsitz, Journal of the Royal Statistical Society Series C-Applied Statistics 2004 53 2 293 310 10.1046/j.1467-9876.2003.05168.x (Pubitemid 38597505)
-
(2004)
Journal of the Royal Statistical Society. Series C: Applied Statistics
, vol.53
, Issue.2
, pp. 293-310
-
-
Herring, A.H.1
Ibrahim, J.G.2
Lipsitz, S.R.3
-
21
-
-
3042807973
-
Imputations of missing values in practice: Results from imputations of serum cholesterol in 28 cohort studies
-
10.1093/aje/kwh175. 15229115
-
Imputations of missing values in practice: Results from imputations of serum cholesterol in 28 cohort studies. F Barzi M Woodward, American Journal of Epidemiology 2004 160 1 34 45 10.1093/aje/kwh175 15229115
-
(2004)
American Journal of Epidemiology
, vol.160
, Issue.1
, pp. 34-45
-
-
Barzi, F.1
Woodward, M.2
-
23
-
-
1842607847
-
-
R Development Core Team, Vienna, Austria: R Foundation for Statistical Computing
-
R: A language and environment for statistical computing. R Development Core Team, Vienna, Austria: R Foundation for Statistical Computing 2004
-
(2004)
R: A Language and Environment for Statistical Computing
-
-
-
24
-
-
0033067540
-
Modelling the effects of standard prognostic factors in node-positive breast cancer. German Breast Cancer Study Group (GBSG)
-
10.1038/sj.bjc.6690279. 10206288
-
Modelling the effects of standard prognostic factors in node-positive breast cancer. German Breast Cancer Study Group (GBSG). W Sauerbrei P Royston H Bojar C Schmoor M Schumacher, British Journal of Cancer 1999 79 11-12 1752 1760 10.1038/sj.bjc.6690279 10206288
-
(1999)
British Journal of Cancer
, vol.79
, Issue.11-12
, pp. 1752-1760
-
-
Sauerbrei, W.1
Royston, P.2
Bojar, H.3
Schmoor, C.4
Schumacher, M.5
-
25
-
-
33845891920
-
The design of simulation studies in medical statistics
-
10.1002/sim.2673. 16947139
-
The design of simulation studies in medical statistics. A Burton DG Altman P Royston RL Holder, Statistics in Medicine 2006 25 24 4279 4292 10.1002/sim.2673 16947139
-
(2006)
Statistics in Medicine
, vol.25
, Issue.24
, pp. 4279-4292
-
-
Burton, A.1
Altman, D.G.2
Royston, P.3
Holder, R.L.4
-
26
-
-
19944372078
-
Generating survival times to simulate Cox proportional hazards models
-
10.1002/sim.2059. 15724232
-
Generating survival times to simulate Cox proportional hazards models. R Bender T Augustin M Blettner, Statistics in Medicine 2005 24 11 1713 1723 10.1002/sim.2059 15724232
-
(2005)
Statistics in Medicine
, vol.24
, Issue.11
, pp. 1713-1723
-
-
Bender, R.1
Augustin, T.2
Blettner, M.3
-
28
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
11778676
-
A comparison of inclusive and restrictive strategies in modern missing data procedures. LM Collins JL Schafer CM Kam, Psychological Methods 2001 6 4 330 351 11778676
-
(2001)
Psychological Methods
, vol.6
, Issue.4
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.M.3
-
29
-
-
1442351098
-
A new measure of prognostic separation in survival data
-
10.1002/sim.1621. 14981672
-
A new measure of prognostic separation in survival data. P Royston W Sauerbrei, Statistics in Medicine 2004 23 5 723 748 10.1002/sim.1621 14981672
-
(2004)
Statistics in Medicine
, vol.23
, Issue.5
, pp. 723-748
-
-
Royston, P.1
Sauerbrei, W.2
-
30
-
-
0346072211
-
Adjusting regression attenuation in the Cox proportional hazards model
-
10.1016/S0378-3758(98)00178-5
-
Adjusting regression attenuation in the Cox proportional hazards model. FH Kong, Journal of Statistical Planning and Inference 1999 79 1 31 44 10.1016/S0378-3758(98)00178-5
-
(1999)
Journal of Statistical Planning and Inference
, vol.79
, Issue.1
, pp. 31-44
-
-
Kong, F.H.1
-
32
-
-
69049098269
-
Combining estimates of interest in prognostic modelling studies after multiple imputation: Current practice and guidelines
-
10.1186/1471-2288-9-57. 19638200
-
Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines. A Marshall D Altman R Holder P Royston, BMC Medical Research Methodology 2009 9 1 57 10.1186/1471-2288-9-57 19638200
-
(2009)
BMC Medical Research Methodology
, vol.9
, Issue.1
, pp. 57
-
-
Marshall, A.1
Altman, D.2
Holder, R.3
Royston, P.4
-
34
-
-
48249126832
-
How should variable selection be performed with multiply imputed data?
-
10.1002/sim.3177. 18203127
-
How should variable selection be performed with multiply imputed data? AM Wood IR White P Royston, Statistics in Medicine 2008 27 17 3227 3246 10.1002/sim.3177 18203127
-
(2008)
Statistics in Medicine
, vol.27
, Issue.17
, pp. 3227-3246
-
-
Wood, A.M.1
White, I.R.2
Royston, P.3
-
35
-
-
0025801348
-
Multiple imputation in health-care databases: An overview and some applications
-
10.1002/sim.4780100410. 2057657
-
Multiple imputation in health-care databases: an overview and some applications. DB Rubin N Schenker, Statistics in Medicine 1991 10 4 585 598 10.1002/sim.4780100410 2057657
-
(1991)
Statistics in Medicine
, vol.10
, Issue.4
, pp. 585-598
-
-
Rubin, D.B.1
Schenker, N.2
-
36
-
-
21844466220
-
A comparison of imputation methods in a longitudinal randomized clinical trial
-
10.1002/sim.2099. 15889392
-
A comparison of imputation methods in a longitudinal randomized clinical trial. LQ Tang JW Song TR Belin J Unutzer, Statistics in Medicine 2005 24 14 2111 2128 10.1002/sim.2099 15889392
-
(2005)
Statistics in Medicine
, vol.24
, Issue.14
, pp. 2111-2128
-
-
Tang, L.Q.1
Song, J.W.2
Belin, T.R.3
Unutzer, J.4
-
37
-
-
0030539070
-
Multiple imputation after 18+ years
-
10.2307/2291635
-
Multiple imputation after 18+ years. DB Rubin, Journal of the American Statistical Association 1996 91 434 473 489 10.2307/2291635
-
(1996)
Journal of the American Statistical Association
, vol.91
, Issue.434
, pp. 473-489
-
-
Rubin, D.B.1
-
39
-
-
0242710940
-
A potential for bias when rounding in multiple imputation
-
10.1198/0003130032314
-
A potential for bias when rounding in multiple imputation. NJ Horton SR Lipsitz M Parzen, American Statistician 2003 57 4 229 232 10.1198/0003130032314
-
(2003)
American Statistician
, vol.57
, Issue.4
, pp. 229-232
-
-
Horton, N.J.1
Lipsitz, S.R.2
Parzen, M.3
-
40
-
-
69949108828
-
Imputing missing covariate values for the Cox model
-
10.1002/sim.3618. 19452569
-
Imputing missing covariate values for the Cox model. I White P Royston, Statistics in Medicine 2009 28 15 1982 1998 10.1002/sim.3618 19452569
-
(2009)
Statistics in Medicine
, vol.28
, Issue.15
, pp. 1982-1998
-
-
White, I.1
Royston, P.2
|