메뉴 건너뛰기




Volumn 8, Issue MAY, 2017, Pages

Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate

Author keywords

Acetate; Biocathode; Chemicals from CO2; Hydrogen; Industrial biotechnology; Microbial electrosynthesis

Indexed keywords

ACETIC ACID; CARBON DIOXIDE; HYDROGEN;

EID: 85019690347     PISSN: None     EISSN: 1664302X     Source Type: Journal    
DOI: 10.3389/fmicb.2017.00756     Document Type: Article
Times cited : (112)

References (59)
  • 1
    • 84985029830 scopus 로고    scopus 로고
    • Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata
    • Ammam, F., Tremblay, P. L., Lizak, D. M., and Zhang, T. (2016). Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata. Biotechnol. Biofuels 9, 163. doi: 10.1186/s13068-016-0576-0
    • (2016) Biotechnol. Biofuels , vol.9 , pp. 163
    • Ammam, F.1    Tremblay, P.L.2    Lizak, D.M.3    Zhang, T.4
  • 2
    • 84978079736 scopus 로고    scopus 로고
    • Extraction and esterification of low-titer short-chain volatile fatty acids from anaerobic fermentation with ionic liquids
    • Andersen, S. J., Berton, J. K. E. T., Naert, P., Gildemyn, S., Rabaey, K., and Stevens, C. V. (2016). Extraction and esterification of low-titer short-chain volatile fatty acids from anaerobic fermentation with ionic liquids. ChemSusChem 9, 2059-2063. doi: 10.1002/cssc.201600473
    • (2016) ChemSusChem , vol.9 , pp. 2059-2063
    • Andersen, S.J.1    Berton, J.K.E.T.2    Naert, P.3    Gildemyn, S.4    Rabaey, K.5    Stevens, C.V.6
  • 3
    • 84902596879 scopus 로고    scopus 로고
    • Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams
    • Andersen, S. J., Hennebel, T., Gildemyn, S., Coma, M., Desloover, J., Berton, J., et al. (2014). Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. Environ. Sci. Technol. 48, 7135-7142. doi: 10.1021/es500483w
    • (2014) Environ. Sci. Technol , vol.48 , pp. 7135-7142
    • Andersen, S.J.1    Hennebel, T.2    Gildemyn, S.3    Coma, M.4    Desloover, J.5    Berton, J.6
  • 4
    • 85019726296 scopus 로고    scopus 로고
    • How could chemical engineering help in deciphering electromicrobial mechanisms?
    • Bergel, A. (2016). How could chemical engineering help in deciphering electromicrobial mechanisms? BIO Web Conf. 6:02005. doi: 10.1051/bioconf/20160602005
    • (2016) BIO Web Conf , vol.6 , pp. 02005
    • Bergel, A.1
  • 6
    • 84899842600 scopus 로고    scopus 로고
    • Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell
    • Brown, R. K., Harnisch, F., Wirth, S., Wahlandt, H., Dockhorn, T., Dichtl, N., et al. (2014). Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell. Bioresour. Technol. 163, 206-213. doi: 10.1016/j.biortech.2014.04.044
    • (2014) Bioresour. Technol , vol.163 , pp. 206-213
    • Brown, R.K.1    Harnisch, F.2    Wirth, S.3    Wahlandt, H.4    Dockhorn, T.5    Dichtl, N.6
  • 7
    • 85006744106 scopus 로고    scopus 로고
    • How to sustainably feed a microbe: strategies for biological production of carbon-based commodities with renewable electricity
    • Butler, C. S., and Lovley, D. R. (2016). How to sustainably feed a microbe: strategies for biological production of carbon-based commodities with renewable electricity. Front. Microbiol. 7:1879. doi: 10.3389/fmicb.2016.01879
    • (2016) Front. Microbiol , vol.7 , pp. 1879
    • Butler, C.S.1    Lovley, D.R.2
  • 8
    • 84949176674 scopus 로고    scopus 로고
    • 'Electrofuels: a new paradigm for renewable fuels, '
    • ed. J. W. Lee (New York, NY: Springer Science & Business Media)
    • Conrado, R. J., Haynes, C. A., Haendler, B. E., and Toone, E. J. (2013). "Electrofuels: a new paradigm for renewable fuels, " in Advanced Biofuels and Bioproducts, ed. J. W. Lee (New York, NY: Springer Science & Business Media), 1037-1064. doi: 10.1007/978-1-4614-3348-4_38
    • (2013) Advanced Biofuels and Bioproducts , pp. 1037-1064
    • Conrado, R.J.1    Haynes, C.A.2    Haendler, B.E.3    Toone, E.J.4
  • 9
    • 84872148262 scopus 로고    scopus 로고
    • Commercial biomass syngas fermentation
    • Daniell, J., Köpke, M., and Simpson, S. D. (2012). Commercial biomass syngas fermentation. Energies 5:5372. doi: 10.3390/en5125372
    • (2012) Energies , vol.5 , pp. 5372
    • Daniell, J.1    Köpke, M.2    Simpson, S.D.3
  • 10
    • 84997403734 scopus 로고    scopus 로고
    • Low-carbon fuel and chemical production by anaerobic gas fermentation
    • Daniell, J., Nagaraju, S., Burton, F., Köpke, M., and Simpson, S. D. (2016). Low-carbon fuel and chemical production by anaerobic gas fermentation. Adv. Biochem. Eng. 156, 293-321.
    • (2016) Adv. Biochem. Eng , vol.156 , pp. 293-321
    • Daniell, J.1    Nagaraju, S.2    Burton, F.3    Köpke, M.4    Simpson, S.D.5
  • 11
    • 78650186645 scopus 로고    scopus 로고
    • Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii
    • Demler, M., and Weuster-Botz, D. (2011). Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii. Biotechnol. Bioeng. 108, 470-474. doi: 10.1002/bit.22935
    • (2011) Biotechnol. Bioeng , vol.108 , pp. 470-474
    • Demler, M.1    Weuster-Botz, D.2
  • 12
    • 84870188327 scopus 로고    scopus 로고
    • Operational and technical considerations for microbial electrosynthesis
    • Desloover, J., Arends, J. B. A., Hennebel, T., and Rabaey, K. (2012). Operational and technical considerations for microbial electrosynthesis. Biochem. Soc. Trans. 40, 1233-1238. doi: 10.1042/BST20120111
    • (2012) Biochem. Soc. Trans , vol.40 , pp. 1233-1238
    • Desloover, J.1    Arends, J.B.A.2    Hennebel, T.3    Rabaey, K.4
  • 13
    • 84928776576 scopus 로고    scopus 로고
    • Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis
    • Deutzmann, J. S., Sahin, M., and Spormann, A. M. (2015). Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6:e00496-15. doi: 10.1128/mBio.00496-15
    • (2015) mBio , vol.6
    • Deutzmann, J.S.1    Sahin, M.2    Spormann, A.M.3
  • 14
    • 84994121166 scopus 로고    scopus 로고
    • Enhanced microbial electrosynthesis by using defined co-cultures
    • Deutzmann, J. S., and Spormann, A. M. (2016). Enhanced microbial electrosynthesis by using defined co-cultures. ISME J. 11, 704-714. doi: 10.1038/ismej.2016.149
    • (2016) ISME J , vol.11 , pp. 704-714
    • Deutzmann, J.S.1    Spormann, A.M.2
  • 15
    • 84997207101 scopus 로고    scopus 로고
    • Gas fermentation-a biotechnological solution for today's challenges
    • Dürre, P. (2016). Gas fermentation-a biotechnological solution for today's challenges. Microb. Biotechnol. 10, 14-16. doi: 10.1111/1751-7915.12431
    • (2016) Microb. Biotechnol , vol.10 , pp. 14-16
    • Dürre, P.1
  • 17
    • 84874116531 scopus 로고    scopus 로고
    • 2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals
    • 2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr. Opin. Chem. Eng. 1, 1-16. doi: 10.1016/j.coche.2012.07.005
    • (2012) Curr. Opin. Chem. Eng , vol.1 , pp. 1-16
    • Fast, A.G.1    Papoutsakis, E.T.2
  • 18
    • 84875677796 scopus 로고    scopus 로고
    • The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems
    • Flexer, V., Chen, J., Donose, B. C., Sherrell, P., Wallace, G. G., and Keller, J. (2013). The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. Energy Environ. Sci. 6, 1291-1298. doi: 10.1039/c3ee00052d
    • (2013) Energy Environ. Sci , vol.6 , pp. 1291-1298
    • Flexer, V.1    Chen, J.2    Donose, B.C.3    Sherrell, P.4    Wallace, G.G.5    Keller, J.6
  • 19
    • 77951806527 scopus 로고    scopus 로고
    • Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells
    • Foley, J. M., Rozendal, R. A., Hertle, C. K., Lant, P. A., and Rabaey, K. (2010). Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ. Sci. Technol. 44, 3629-3637. doi: 10.1021/es100125h
    • (2010) Environ. Sci. Technol , vol.44 , pp. 3629-3637
    • Foley, J.M.1    Rozendal, R.A.2    Hertle, C.K.3    Lant, P.A.4    Rabaey, K.5
  • 22
    • 33646438534 scopus 로고    scopus 로고
    • Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash
    • Graves, T., Narendranath, N. V., Dawson, K., and Power, R. (2006). Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J. Ind. Microbiol. Biotechnol. 33, 469-474. doi: 10.1007/s10295-006-0091-6
    • (2006) J. Ind. Microbiol. Biotechnol , vol.33 , pp. 469-474
    • Graves, T.1    Narendranath, N.V.2    Dawson, K.3    Power, R.4
  • 23
    • 84963589368 scopus 로고    scopus 로고
    • Life cycle assessments of ethanol production via gas fermentation: anticipated greenhouse gas emissions for cellulosic and waste gas feedstocks
    • Handler, R. M., Shonnard, D. R., Griffing, E. M., Lai, A., and Palou-Rivera, I. (2016). Life cycle assessments of ethanol production via gas fermentation: anticipated greenhouse gas emissions for cellulosic and waste gas feedstocks. Ind. Eng. Chem. Res. 55, 3253-3261. doi: 10.1021/acs.iecr.5b03215
    • (2016) Ind. Eng. Chem. Res , vol.55 , pp. 3253-3261
    • Handler, R.M.1    Shonnard, D.R.2    Griffing, E.M.3    Lai, A.4    Palou-Rivera, I.5
  • 24
    • 84930011206 scopus 로고    scopus 로고
    • Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production
    • Harnisch, F., Rosa, L. F. M., Kracke, F., Virdis, B., and Krömer, J. O. (2014). Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production. ChemSusChem 8, 758-766. doi: 10.1002/cssc.201402736
    • (2014) ChemSusChem , vol.8 , pp. 758-766
    • Harnisch, F.1    Rosa, L.F.M.2    Kracke, F.3    Virdis, B.4    Krömer, J.O.5
  • 25
  • 26
    • 84881667252 scopus 로고    scopus 로고
    • 2 fixation by the acetogenic bacterium Moorella thermoacetica
    • 2 fixation by the acetogenic bacterium Moorella thermoacetica. AIChE J. 59, 3176-3183. doi: 10.1002/aic.14127
    • (2013) AIChE J , vol.59 , pp. 3176-3183
    • Hu, P.1    Rismani-Yazdi, H.2    Stephanopoulos, G.3
  • 28
    • 84904753488 scopus 로고    scopus 로고
    • A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
    • Jourdin, L., Freguia, S., Donose, B. C., Chen, J., Wallace, G. G., Keller, J., et al. (2014). A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J. Mater. Chem. A 2, 13093-13102. doi: 10.1039/C4TA03101F
    • (2014) J. Mater. Chem. A , vol.2 , pp. 13093-13102
    • Jourdin, L.1    Freguia, S.2    Donose, B.C.3    Chen, J.4    Wallace, G.G.5    Keller, J.6
  • 29
    • 84947251258 scopus 로고    scopus 로고
    • High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide
    • Jourdin, L., Grieger, T., Monetti, J., Flexer, V., Freguia, S., Lu, Y., et al. (2015). High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environ. Sci. Technol. 49, 13566-13574. doi: 10.1021/acs.est.5b03821
    • (2015) Environ. Sci. Technol , vol.49 , pp. 13566-13574
    • Jourdin, L.1    Grieger, T.2    Monetti, J.3    Flexer, V.4    Freguia, S.5    Lu, Y.6
  • 30
    • 84939175815 scopus 로고    scopus 로고
    • Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention
    • Kantzow, C., Mayer, A., and Weuster-Botz, D. (2015). Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention. J. Biotechnol. 212, 11-15. doi: 10.1016/j.jbiotec.2015.07.020
    • (2015) J. Biotechnol , vol.212 , pp. 11-15
    • Kantzow, C.1    Mayer, A.2    Weuster-Botz, D.3
  • 32
    • 84918517242 scopus 로고    scopus 로고
    • Reactor concepts for bioelectrochemical syntheses and energy conversion
    • Krieg, T., Sydow, A., Schröder, U., Schrader, J., and Holtmann, D. (2014). Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol. 32, 1-11. doi: 10.1016/j.tibtech.2014.10.004
    • (2014) Trends Biotechnol , vol.32 , pp. 1-11
    • Krieg, T.1    Sydow, A.2    Schröder, U.3    Schrader, J.4    Holtmann, D.5
  • 33
    • 84908021230 scopus 로고    scopus 로고
    • Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome
    • LaBelle, E. V., Marshall, C. W., Gilbert, J. A., and May, H. D. (2014). Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome. PLoS ONE 9:e109935. doi: 10.1371/journal.pone.0109935
    • (2014) PLoS ONE , vol.9
    • LaBelle, E.V.1    Marshall, C.W.2    Gilbert, J.A.3    May, H.D.4
  • 34
    • 84860362593 scopus 로고    scopus 로고
    • An integrated paradigm for cellulosic biorefineries: utilization of lignocellulosic biomass as self-sufficient feedstocks for fuel, food precursors and saccharolytic enzyme production
    • Lau, M. W., Bals, B. D., Chundawat, S. P. S., Jin, M., Gunawan, C., Balan, V., et al. (2012). An integrated paradigm for cellulosic biorefineries: utilization of lignocellulosic biomass as self-sufficient feedstocks for fuel, food precursors and saccharolytic enzyme production. Energy Environ. Sci. 5, 7100-7110. doi: 10.1039/c2ee03596k
    • (2012) Energy Environ. Sci , vol.5 , pp. 7100-7110
    • Lau, M.W.1    Bals, B.D.2    Chundawat, S.P.S.3    Jin, M.4    Gunawan, C.5    Balan, V.6
  • 35
    • 0000352181 scopus 로고    scopus 로고
    • Corn steep liquor as a cost-effective nutrition adjunct in high-performance Zymomonas ethanol fermentations
    • Lawford, H. G., and Rousseau, J. D. (1997). Corn steep liquor as a cost-effective nutrition adjunct in high-performance Zymomonas ethanol fermentations. Appl. Biochem. Biotechnol. 6, 287-304. doi: 10.1007/BF02920431
    • (1997) Appl. Biochem. Biotechnol , vol.6 , pp. 287-304
    • Lawford, H.G.1    Rousseau, J.D.2
  • 36
    • 84864831407 scopus 로고    scopus 로고
    • Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
    • Logan, B. E., and Rabaey, K. (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337, 686-690. doi: 10.1126/science.1217412
    • (2012) Science , vol.337 , pp. 686-690
    • Logan, B.E.1    Rabaey, K.2
  • 37
    • 84878652242 scopus 로고    scopus 로고
    • Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
    • Lovley, D. R., and Nevin, K. P. (2013). Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol. 24, 1-6. doi: 10.1016/j.copbio.2013.02.012
    • (2013) Curr. Opin. Biotechnol , vol.24 , pp. 1-6
    • Lovley, D.R.1    Nevin, K.P.2
  • 39
    • 84870769198 scopus 로고    scopus 로고
    • Electrosynthesis of commodity chemicals by an autotrophic microbial community
    • Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S., and May, H. D. (2012). Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl. Environ. Microbiol. 78, 8412-8420. doi: 10.1128/AEM.02401-12
    • (2012) Appl. Environ. Microbiol , vol.78 , pp. 8412-8420
    • Marshall, C.W.1    Ross, D.E.2    Fichot, E.B.3    Norman, R.S.4    May, H.D.5
  • 40
    • 84878648156 scopus 로고    scopus 로고
    • Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
    • Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S., and May, H. D. (2013). Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ. Sci. Technol. 47, 6023-6029. doi: 10.1021/es400341b
    • (2013) Environ. Sci. Technol , vol.47 , pp. 6023-6029
    • Marshall, C.W.1    Ross, D.E.2    Fichot, E.B.3    Norman, R.S.4    May, H.D.5
  • 41
    • 84991687602 scopus 로고    scopus 로고
    • The bioelectrosynthesis of acetate
    • May, H. D., Evans, P. J., and LaBelle, E. V. (2016). The bioelectrosynthesis of acetate. Curr. Opin. Biotechnol. 42, 225-233. doi: 10.1016/j.copbio.2016.09.004
    • (2016) Curr. Opin. Biotechnol , vol.42 , pp. 225-233
    • May, H.D.1    Evans, P.J.2    LaBelle, E.V.3
  • 42
    • 84909953708 scopus 로고    scopus 로고
    • Modeling and simulation of direct production of acetic acid from cheese whey in a multi-stage membrane-integrated bioreactor
    • Nayak, J., Pal, M., and Pal, P. (2015). Modeling and simulation of direct production of acetic acid from cheese whey in a multi-stage membrane-integrated bioreactor. Biochem. Eng. J. 93, 179-195. doi: 10.1016/j.bej.2014.10.002
    • (2015) Biochem. Eng. J , vol.93 , pp. 179-195
    • Nayak, J.1    Pal, M.2    Pal, P.3
  • 44
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., and Lovley, D. R. (2010). Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1:e00103-10. doi: 10.1128/mBio.00103-10
    • (2010) mBio , vol.1
    • Nevin, K.P.1    Woodard, T.L.2    Franks, A.E.3    Summers, Z.M.4    Lovley, D.R.5
  • 45
    • 78650212501 scopus 로고    scopus 로고
    • Coupling glucose fermentation and homoacetogenesis for elevated acetate production: experimental and mathematical approaches
    • Ni, B.-J., Liu, H., Nie, Y.-Q., Zeng, R. J., Du, G.-C., Chen, J., et al. (2010). Coupling glucose fermentation and homoacetogenesis for elevated acetate production: experimental and mathematical approaches. Biotechnol. Bioeng. 108, 345-353. doi: 10.1002/bit.22908
    • (2010) Biotechnol. Bioeng , vol.108 , pp. 345-353
    • Ni, B.-J.1    Liu, H.2    Nie, Y.-Q.3    Zeng, R.J.4    Du, G.-C.5    Chen, J.6
  • 46
    • 84994091841 scopus 로고    scopus 로고
    • Acetic acid production and purification: critical review towards process intensification
    • Pal, P., and Nayak, J. (2016). Acetic acid production and purification: critical review towards process intensification. Sep. Purif. Rev. 46, 44-61. doi: 10.1080/15422119.2016.1185017
    • (2016) Sep. Purif. Rev , vol.46 , pp. 44-61
    • Pal, P.1    Nayak, J.2
  • 47
    • 84945950526 scopus 로고    scopus 로고
    • Reassessing the progress in the production of advanced biofuels in the current competitive environment and beyond: what are the successes and where progress eludes us and why
    • Papoutsakis, E. T. (2015). Reassessing the progress in the production of advanced biofuels in the current competitive environment and beyond: what are the successes and where progress eludes us and why. Ind. Eng. Chem. Res. 54, 10170-10182. doi: 10.1021/acs.iecr.5b01695
    • (2015) Ind. Eng. Chem. Res , vol.54 , pp. 10170-10182
    • Papoutsakis, E.T.1
  • 49
    • 85019725838 scopus 로고    scopus 로고
    • [accessed November 10, 2016]
    • Raizada, T. (2016). US Acetic Acid Demand Soft in Americas. Available at: http://www.icis.com/resources/news/2016/09/02/10031371/us-acetic-acid-demand-soft-in-the-americas/[accessed November 10, 2016].
    • (2016) US Acetic Acid Demand Soft in Americas
    • Raizada, T.1
  • 50
    • 84884626406 scopus 로고    scopus 로고
    • A two-stage continuous fermentation system for conversion of syngas into ethanol
    • Richter, H., Martin, M., and Angenent, L. T. (2013). A two-stage continuous fermentation system for conversion of syngas into ethanol. Energies 6, 3987-4000. doi: 10.3390/en6083987
    • (2013) Energies , vol.6 , pp. 3987-4000
    • Richter, H.1    Martin, M.2    Angenent, L.T.3
  • 51
    • 84926683751 scopus 로고    scopus 로고
    • Microbial electrochemistry and technology: terminology and classification
    • Schröder, U., Harnisch, F., and Angenent, L. T. (2015). Microbial electrochemistry and technology: terminology and classification. Energy Environ. Sci. 8, 513-519. doi: 10.1039/C4EE03359K
    • (2015) Energy Environ. Sci , vol.8 , pp. 513-519
    • Schröder, U.1    Harnisch, F.2    Angenent, L.T.3
  • 52
    • 84893165323 scopus 로고    scopus 로고
    • Chain elongation in anaerobic reactor microbiomes to recover resources from waste
    • Spirito, C. M., Richter, H., Rabaey, K., Stams, A. J., and Angenent, L. T. (2014). Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr. Opin. Biotechnol. 27, 115-122. doi: 10.1016/j.copbio.2014.01.003
    • (2014) Curr. Opin. Biotechnol , vol.27 , pp. 115-122
    • Spirito, C.M.1    Richter, H.2    Rabaey, K.3    Stams, A.J.4    Angenent, L.T.5
  • 53
    • 85005917697 scopus 로고    scopus 로고
    • Extracellular electron uptake: among autotrophs and mediated by surfaces
    • Tremblay, P. L., Angenent, L. T., and Zhang, T. (2016). Extracellular electron uptake: among autotrophs and mediated by surfaces. Trends Biotechnol. 35, 360-371. doi: 10.1016/j.tibtech.2016.10.004
    • (2016) Trends Biotechnol , vol.35 , pp. 360-371
    • Tremblay, P.L.1    Angenent, L.T.2    Zhang, T.3
  • 54
    • 84991763268 scopus 로고    scopus 로고
    • Chemicals Committee Meeting at APIC 2015 [accessed November 10, 2016]
    • Wakatsuki, K. (2015). Acetyls Chain-World Market Overview. Chemicals Committee Meeting at APIC 2015. Available at: http://www.orbichem.com/userfiles/APIC%202015/APIC2015_Keiji_Wakatsuki.pdf [accessed November 10, 2016].
    • (2015) Acetyls Chain-World Market Overview
    • Wakatsuki, K.1
  • 55
    • 70449342444 scopus 로고    scopus 로고
    • Report No: LBNL-1005951. Germantown, MD: United States Department of Energy
    • Wiser, R., and Bolinger, M. (2016). 2015 Wind Technologies Market Report. Report No: LBNL-1005951. Germantown, MD: United States Department of Energy.
    • (2016) 2015 Wind Technologies Market Report
    • Wiser, R.1    Bolinger, M.2
  • 56
    • 84926645424 scopus 로고    scopus 로고
    • In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis
    • Xu, J., Guzman, J. J. L., Andersen, S. J., Rabaey, K., and Angenent, L. T. (2015). In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis. Chem. Commun. 51, 6847-6850. doi: 10.1039/C5CC01897H
    • (2015) Chem. Commun , vol.51 , pp. 6847-6850
    • Xu, J.1    Guzman, J.J.L.2    Andersen, S.J.3    Rabaey, K.4    Angenent, L.T.5
  • 57
    • 84920286410 scopus 로고    scopus 로고
    • Hydrogen evolution catalyzed by viable and non-viable cells on biocathodes
    • Yates, M. D., Siegert, M., and Logan, B. E. (2014). Hydrogen evolution catalyzed by viable and non-viable cells on biocathodes. Int. J. Hydrogen Energy 39, 16841-16851. doi: 10.1016/j.ijhydene.2014.08.015
    • (2014) Int. J. Hydrogen Energy , vol.39 , pp. 16841-16851
    • Yates, M.D.1    Siegert, M.2    Logan, B.E.3
  • 58
    • 84885385895 scopus 로고    scopus 로고
    • Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor
    • Zhang, F., Ding, J., Zhang, Y., Chen, M., Ding, Z. W., van Loosdrecht, M. C. M., et al. (2013). Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res. 47, 6122-6129. doi: 10.1016/j.watres.2013.07.033
    • (2013) Water Res , vol.47 , pp. 6122-6129
    • Zhang, F.1    Ding, J.2    Zhang, Y.3    Chen, M.4    Ding, Z.W.5    van Loosdrecht, M.C.M.6
  • 59
    • 84973661370 scopus 로고    scopus 로고
    • Microbial electrochemical systems and technologies: it is time to report the capital costs
    • Zhang, Y., and Angelidaki, I. (2016). Microbial electrochemical systems and technologies: it is time to report the capital costs. Environ. Sci. Technol. 50, 5432-5433. doi: 10.1021/acs.est.6b01601
    • (2016) Environ. Sci. Technol , vol.50 , pp. 5432-5433
    • Zhang, Y.1    Angelidaki, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.