메뉴 건너뛰기




Volumn 49, Issue 22, 2015, Pages 13566-13574

High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide

Author keywords

[No Author keywords available]

Indexed keywords

ACETIC ACID; CARBON NANOTUBES; DEPOSITION; ELECTROCHEMICAL ELECTRODES; ELECTROPHORESIS; ELECTROPHORETIC COATINGS; FERMENTATION; GLASSY CARBON; MULTIWALLED CARBON NANOTUBES (MWCN); ORGANIC ACIDS; PH; YARN;

EID: 84947251258     PISSN: 0013936X     EISSN: 15205851     Source Type: Journal    
DOI: 10.1021/acs.est.5b03821     Document Type: Article
Times cited : (251)

References (68)
  • 1
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis - revisiting the electrical route for microbial production
    • Rabaey, K.; Rozendal, R. A. Microbial electrosynthesis-revisiting the electrical route for microbial production Nat. Rev. Microbiol. 2010, 8 (10) 706-716 10.1038/nrmicro2422
    • (2010) Nat. Rev. Microbiol. , vol.8 , Issue.10 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 2
    • 84878652242 scopus 로고    scopus 로고
    • Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
    • Lovley, D. R.; Nevin, K. P. Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity Curr. Opin. Biotechnol. 2013, 24 (3) 385-390 10.1016/j.copbio.2013.02.012
    • (2013) Curr. Opin. Biotechnol. , vol.24 , Issue.3 , pp. 385-390
    • Lovley, D.R.1    Nevin, K.P.2
  • 3
    • 79957982062 scopus 로고    scopus 로고
    • Metabolic and practical considerations on microbial electrosynthesis
    • Rabaey, K.; Girguis, P.; Nielsen, L. K. Metabolic and practical considerations on microbial electrosynthesis Curr. Opin. Biotechnol. 2011, 22 (3) 371-377 10.1016/j.copbio.2011.01.010
    • (2011) Curr. Opin. Biotechnol. , vol.22 , Issue.3 , pp. 371-377
    • Rabaey, K.1    Girguis, P.2    Nielsen, L.K.3
  • 4
    • 33750458683 scopus 로고    scopus 로고
    • Powering the Planet: Chemical Challenges in Solar Energy Utilization
    • Lewis, N. S.; Nocera, D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (43) 15729-15735 10.1073/pnas.0603395103
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , Issue.43 , pp. 15729-15735
    • Lewis, N.S.1    Nocera, D.G.2
  • 6
    • 84904753488 scopus 로고    scopus 로고
    • A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
    • Jourdin, L.; Freguia, S.; Donose, B. C.; Chen, J.; Wallace, G. G.; Keller, J.; Flexer, V. A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis J. Mater. Chem. A 2014, 2 (32) 13093-13102 10.1039/C4TA03101F
    • (2014) J. Mater. Chem. A , vol.2 , Issue.32 , pp. 13093-13102
    • Jourdin, L.1    Freguia, S.2    Donose, B.C.3    Chen, J.4    Wallace, G.G.5    Keller, J.6    Flexer, V.7
  • 7
    • 84878637526 scopus 로고    scopus 로고
    • Production of fuels and chemicals from waste by microbiomes
    • Marshall, C. W.; LaBelle, E. V.; May, H. D. Production of fuels and chemicals from waste by microbiomes Curr. Opin. Biotechnol. 2013, 24 (3) 391-397 10.1016/j.copbio.2013.03.016
    • (2013) Curr. Opin. Biotechnol. , vol.24 , Issue.3 , pp. 391-397
    • Marshall, C.W.1    LaBelle, E.V.2    May, H.D.3
  • 8
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • Nevin, K. P.; Woodard, T. L.; Franks, A. E.; Summers, Z. M.; Lovley, D. R. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds mBio 2010, 1 (2) e00103-10 10.1128/mBio.00103-10
    • (2010) mBio , vol.1 , Issue.2 , pp. e00103-e00110
    • Nevin, K.P.1    Woodard, T.L.2    Franks, A.E.3    Summers, Z.M.4    Lovley, D.R.5
  • 9
    • 84881404831 scopus 로고    scopus 로고
    • Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
    • Nie, H.; Zhang, T.; Cui, M.; Lu, H.; Lovley, D. R.; Russell, T. P. Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells Phys. Chem. Chem. Phys. 2013, 15 (34) 14290-14294 10.1039/c3cp52697f
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , Issue.34 , pp. 14290-14294
    • Nie, H.1    Zhang, T.2    Cui, M.3    Lu, H.4    Lovley, D.R.5    Russell, T.P.6
  • 12
    • 84870769198 scopus 로고    scopus 로고
    • Electrosynthesis of Commodity Chemicals by an Autotrophic Microbial Community
    • Marshall, C. W.; Ross, D. E.; Fichot, E. B.; Norman, R. S.; May, H. D. Electrosynthesis of Commodity Chemicals by an Autotrophic Microbial Community Appl. Environ. Microbiol. 2012, 78 (23) 8412-8420 10.1128/AEM.02401-12
    • (2012) Appl. Environ. Microbiol. , vol.78 , Issue.23 , pp. 8412-8420
    • Marshall, C.W.1    Ross, D.E.2    Fichot, E.B.3    Norman, R.S.4    May, H.D.5
  • 13
    • 84878648156 scopus 로고    scopus 로고
    • Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
    • Marshall, C. W.; Ross, D. E.; Fichot, E. B.; Norman, R. S.; May, H. D. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes Environ. Sci. Technol. 2013, 47 (11) 6023-6029 10.1021/es400341b
    • (2013) Environ. Sci. Technol. , vol.47 , Issue.11 , pp. 6023-6029
    • Marshall, C.W.1    Ross, D.E.2    Fichot, E.B.3    Norman, R.S.4    May, H.D.5
  • 14
    • 84883046473 scopus 로고    scopus 로고
    • Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture
    • Su, M.; Jiang, Y.; Li, D. Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture J. Microbiol. Biotechnol. 2013, 23 (8) 1140-1146 10.4014/jmb.1304.04039
    • (2013) J. Microbiol. Biotechnol. , vol.23 , Issue.8 , pp. 1140-1146
    • Su, M.1    Jiang, Y.2    Li, D.3
  • 15
    • 84927559065 scopus 로고    scopus 로고
    • Electrifying microbes for the production of chemicals
    • Tremblay, P.-L.; Zhang, T. Electrifying microbes for the production of chemicals. Front. Microbiol. 2015, 6. 10.3389/fmicb.2015.00201
    • (2015) Front. Microbiol. , vol.6
    • Tremblay, P.-L.1    Zhang, T.2
  • 16
    • 84930010858 scopus 로고    scopus 로고
    • Microbial electrosynthesis of butyrate from carbon dioxide
    • Ganigue, R.; Puig, S.; Batlle-Vilanova, P.; Balaguer, M. D.; Colprim, J. Microbial electrosynthesis of butyrate from carbon dioxide Chem. Commun. 2015, 51 (15) 3235-3238 10.1039/C4CC10121A
    • (2015) Chem. Commun. , vol.51 , Issue.15 , pp. 3235-3238
    • Ganigue, R.1    Puig, S.2    Batlle-Vilanova, P.3    Balaguer, M.D.4    Colprim, J.5
  • 18
    • 84955412403 scopus 로고    scopus 로고
    • Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production
    • Xafenias, N.; Mapelli, V. Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production Int. J. Hydrogen Energy 2014, 39, 21864-21875 10.1016/j.ijhydene.2014.05.038
    • (2014) Int. J. Hydrogen Energy , vol.39 , pp. 21864-21875
    • Xafenias, N.1    Mapelli, V.2
  • 19
    • 84908021230 scopus 로고    scopus 로고
    • Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome
    • LaBelle, E. V.; Marshall, C. W.; Gilbert, J. A.; May, H. D. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome PLoS One 2014, 9 (10) e109935 10.1371/journal.pone.0109935
    • (2014) PLoS One , vol.9 , Issue.10
    • LaBelle, E.V.1    Marshall, C.W.2    Gilbert, J.A.3    May, H.D.4
  • 20
    • 84937469006 scopus 로고    scopus 로고
    • Selective Enrichment Establishes a Stable Performing Community for Microbial Electrosynthesis of Acetate from CO2
    • Patil, S. A.; Arends, J. B. A.; Vanwonterghem, I.; van Meerbergen, J.; Guo, K.; Tyson, G. W.; Rabaey, K. Selective Enrichment Establishes a Stable Performing Community for Microbial Electrosynthesis of Acetate from CO2 Environ. Sci. Technol. 2015, 49 (14) 8833-8843 10.1021/es506149d
    • (2015) Environ. Sci. Technol. , vol.49 , Issue.14 , pp. 8833-8843
    • Patil, S.A.1    Arends, J.B.A.2    Vanwonterghem, I.3    Van Meerbergen, J.4    Guo, K.5    Tyson, G.W.6    Rabaey, K.7
  • 21
    • 64849109739 scopus 로고    scopus 로고
    • Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells
    • Chae, K.-J.; Choi, M.-J.; Lee, J.-W.; Kim, K.-Y.; Kim, I. S. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells Bioresour. Technol. 2009, 100 (14) 3518-3525 10.1016/j.biortech.2009.02.065
    • (2009) Bioresour. Technol. , vol.100 , Issue.14 , pp. 3518-3525
    • Chae, K.-J.1    Choi, M.-J.2    Lee, J.-W.3    Kim, K.-Y.4    Kim, I.S.5
  • 22
    • 84924545907 scopus 로고    scopus 로고
    • Engineering electrodes for microbial electrocatalysis
    • Guo, K.; Prévoteau, A.; Patil, S. A.; Rabaey, K. Engineering electrodes for microbial electrocatalysis Curr. Opin. Biotechnol. 2015, 33 (0) 149-156 10.1016/j.copbio.2015.02.014
    • (2015) Curr. Opin. Biotechnol. , vol.33 , pp. 149-156
    • Guo, K.1    Prévoteau, A.2    Patil, S.A.3    Rabaey, K.4
  • 23
    • 84875677796 scopus 로고    scopus 로고
    • The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems
    • Flexer, V.; Chen, J.; Donose, B. C.; Sherrell, P.; Wallace, G. G.; Keller, J. The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems Energy Environ. Sci. 2013, 6 (4) 1291-1298 10.1039/c3ee00052d
    • (2013) Energy Environ. Sci. , vol.6 , Issue.4 , pp. 1291-1298
    • Flexer, V.1    Chen, J.2    Donose, B.C.3    Sherrell, P.4    Wallace, G.G.5    Keller, J.6
  • 24
    • 0036625085 scopus 로고    scopus 로고
    • Application of electrophoretic and electrolytic deposition techniques in ceramics processing
    • Boccaccini, A. R.; Zhitomirsky, I. Application of electrophoretic and electrolytic deposition techniques in ceramics processing Curr. Opin. Solid State Mater. Sci. 2002, 6 (3) 251-260 10.1016/S1359-0286(02)00080-3
    • (2002) Curr. Opin. Solid State Mater. Sci. , vol.6 , Issue.3 , pp. 251-260
    • Boccaccini, A.R.1    Zhitomirsky, I.2
  • 25
    • 0030216430 scopus 로고    scopus 로고
    • Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics
    • Sarkar, P.; Nicholson, P. S. Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics J. Am. Ceram. Soc. 1996, 79 (8) 1987-2002 10.1111/j.1151-2916.1996.tb08929.x
    • (1996) J. Am. Ceram. Soc. , vol.79 , Issue.8 , pp. 1987-2002
    • Sarkar, P.1    Nicholson, P.S.2
  • 28
    • 2342440729 scopus 로고    scopus 로고
    • Toward Large-Scale Integration of Carbon Nanotubes
    • Chung, J.; Lee, K.-H.; Lee, J.; Ruoff, R. S. Toward Large-Scale Integration of Carbon Nanotubes Langmuir 2004, 20 (8) 3011-3017 10.1021/la035726y
    • (2004) Langmuir , vol.20 , Issue.8 , pp. 3011-3017
    • Chung, J.1    Lee, K.-H.2    Lee, J.3    Ruoff, R.S.4
  • 29
    • 33748955983 scopus 로고    scopus 로고
    • Supercapacitors using carbon nanotubes films by electrophoretic deposition
    • Du, C.; Pan, N. Supercapacitors using carbon nanotubes films by electrophoretic deposition J. Power Sources 2006, 160 (2) 1487-1494 10.1016/j.jpowsour.2006.02.092
    • (2006) J. Power Sources , vol.160 , Issue.2 , pp. 1487-1494
    • Du, C.1    Pan, N.2
  • 30
    • 6044256332 scopus 로고    scopus 로고
    • High power electrochemical capacitors based on carbon nanotube electrodes
    • Niu, C.; Sichel, E. K.; Hoch, R.; Moy, D.; Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes Appl. Phys. Lett. 1997, 70 (11) 1480-1482 10.1063/1.118568
    • (1997) Appl. Phys. Lett. , vol.70 , Issue.11 , pp. 1480-1482
    • Niu, C.1    Sichel, E.K.2    Hoch, R.3    Moy, D.4    Tennent, H.5
  • 32
    • 84865272068 scopus 로고    scopus 로고
    • Electrophoretic deposition under modulated electric fields: a review
    • Ammam, M. Electrophoretic deposition under modulated electric fields: a review RSC Adv. 2012, 2 (20) 7633-7646 10.1039/c2ra01342h
    • (2012) RSC Adv. , vol.2 , Issue.20 , pp. 7633-7646
    • Ammam, M.1
  • 33
    • 80053307107 scopus 로고    scopus 로고
    • Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation
    • Higashi, M.; Domen, K.; Abe, R. Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation Energy Environ. Sci. 2011, 4 (10) 4138-4147 10.1039/c1ee01878g
    • (2011) Energy Environ. Sci. , vol.4 , Issue.10 , pp. 4138-4147
    • Higashi, M.1    Domen, K.2    Abe, R.3
  • 34
    • 77951169987 scopus 로고    scopus 로고
    • Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition
    • An, S. J.; Zhu, Y.; Lee, S. H.; Stoller, M. D.; Emilsson, T.; Park, S.; Velamakanni, A.; An, J.; Ruoff, R. S. Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition J. Phys. Chem. Lett. 2010, 1 (8) 1259-1263 10.1021/jz100080c
    • (2010) J. Phys. Chem. Lett. , vol.1 , Issue.8 , pp. 1259-1263
    • An, S.J.1    Zhu, Y.2    Lee, S.H.3    Stoller, M.D.4    Emilsson, T.5    Park, S.6    Velamakanni, A.7    An, J.8    Ruoff, R.S.9
  • 36
    • 84884227179 scopus 로고    scopus 로고
    • Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms
    • Flexer, V.; Marque, M.; Donose, B. C.; Virdis, B.; Keller, J. Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms Electrochim. Acta 2013, 108 (0) 566-574 10.1016/j.electacta.2013.06.145
    • (2013) Electrochim. Acta , vol.108 , pp. 566-574
    • Flexer, V.1    Marque, M.2    Donose, B.C.3    Virdis, B.4    Keller, J.5
  • 37
    • 84916629365 scopus 로고    scopus 로고
    • Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source
    • Jourdin, L.; Freguia, S.; Donose, B. C.; Keller, J. Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source Bioelectrochemistry 2015, 102 (0) 56-63 10.1016/j.bioelechem.2014.12.001
    • (2015) Bioelectrochemistry , vol.102 , pp. 56-63
    • Jourdin, L.1    Freguia, S.2    Donose, B.C.3    Keller, J.4
  • 38
    • 27644564237 scopus 로고    scopus 로고
    • Multi-walled carbon nanotube coatings using Electrophoretic Deposition (EPD)
    • Thomas, B. J. C.; Boccaccini, A. R.; Shaffer, M. S. P. Multi-walled carbon nanotube coatings using Electrophoretic Deposition (EPD) J. Am. Ceram. Soc. 2005, 88 (4) 980-982 10.1111/j.1551-2916.2005.00155.x
    • (2005) J. Am. Ceram. Soc. , vol.88 , Issue.4 , pp. 980-982
    • Thomas, B.J.C.1    Boccaccini, A.R.2    Shaffer, M.S.P.3
  • 40
    • 44049105889 scopus 로고    scopus 로고
    • Succinic acid: a new platform chemical for biobased polymers from renewable resources
    • Bechthold, I.; Bretz, K.; Kabasci, S.; Kopitzky, R.; Springer, A. Succinic acid: a new platform chemical for biobased polymers from renewable resources Chem. Eng. Technol. 2008, 31 (5) 647-654 10.1002/ceat.200800063
    • (2008) Chem. Eng. Technol. , vol.31 , Issue.5 , pp. 647-654
    • Bechthold, I.1    Bretz, K.2    Kabasci, S.3    Kopitzky, R.4    Springer, A.5
  • 41
    • 78751627523 scopus 로고    scopus 로고
    • Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform
    • Agler, M. T.; Wrenn, B. A.; Zinder, S. H.; Angenent, L. T. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform Trends Biotechnol. 2011, 29 (2) 70-78 10.1016/j.tibtech.2010.11.006
    • (2011) Trends Biotechnol. , vol.29 , Issue.2 , pp. 70-78
    • Agler, M.T.1    Wrenn, B.A.2    Zinder, S.H.3    Angenent, L.T.4
  • 43
    • 0021909106 scopus 로고
    • Acetoanaerobium noterae gen. nov., sp. nov.: an Anaerobic Bacterium That Forms Acetate from H2 and CO2
    • Sleat, R.; Mah, R. A.; Robinson, R. Acetoanaerobium noterae gen. nov., sp. nov.: an Anaerobic Bacterium That Forms Acetate from H2 and CO2 Int. J. Syst. Bacteriol. 1985, 35 (1) 10-15 10.1099/00207713-35-1-10
    • (1985) Int. J. Syst. Bacteriol. , vol.35 , Issue.1 , pp. 10-15
    • Sleat, R.1    Mah, R.A.2    Robinson, R.3
  • 44
    • 0024333565 scopus 로고
    • Hydrogenophaga, a New Genus of Hydrogen-Oxidizing Bacteria That Includes Hydrogenophaga flava comb. nov. (Formerly Pseudomonas flava), Hydrogenophaga palleronii (Formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (Formerly Pseudomonas pseudoflava and "Pseudomonas carboxydoflava"), and Hydrogenophaga taeniospiralis (Formerly Pseudomonas taeniospiralis)
    • WILLEMS, A.; BUSSE, J.; GOOR, M.; POT, B.; FALSEN, E.; JANTZEN, E.; HOSTE, B.; GILLIS, M.; KERSTERS, K.; AULING, G.; DE LEY, J. Hydrogenophaga, a New Genus of Hydrogen-Oxidizing Bacteria That Includes Hydrogenophaga flava comb. nov. (Formerly Pseudomonas flava), Hydrogenophaga palleronii (Formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (Formerly Pseudomonas pseudoflava and "Pseudomonas carboxydoflava"), and Hydrogenophaga taeniospiralis (Formerly Pseudomonas taeniospiralis) Int. J. Syst. Bacteriol. 1989, 39 (3) 319-333 10.1099/00207713-39-3-319
    • (1989) Int. J. Syst. Bacteriol. , vol.39 , Issue.3 , pp. 319-333
    • Willems, A.1    Busse, J.2    Goor, M.3    Pot, B.4    Falsen, E.5    Jantzen, E.6    Hoste, B.7    Gillis, M.8    Kersters, K.9    Auling, G.10    De Ley, J.11
  • 45
    • 84883636434 scopus 로고    scopus 로고
    • Hydrogenophaga electricum sp. nov., isolated from anodic biofilms of an acetate-fed microbial fuel cell
    • Kimura, Z.-i.; Okabe, S. Hydrogenophaga electricum sp. nov., isolated from anodic biofilms of an acetate-fed microbial fuel cell J. Gen. Appl. Microbiol. 2013, 59 (4) 261-266 10.2323/jgam.59.261
    • (2013) J. Gen. Appl. Microbiol. , vol.59 , Issue.4 , pp. 261-266
    • Kimura, Z.-I.1    Okabe, S.2
  • 46
    • 84880922468 scopus 로고    scopus 로고
    • Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen
    • Kimura, Z. I.; Okabe, S. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen ISME J. 2013, 7 (8) 1472-1482 10.1038/ismej.2013.40
    • (2013) ISME J. , vol.7 , Issue.8 , pp. 1472-1482
    • Kimura, Z.I.1    Okabe, S.2
  • 47
    • 84899014516 scopus 로고    scopus 로고
    • Nitrate Shaped the Selenate-Reducing Microbial Community in a Hydrogen-Based Biofilm Reactor
    • Lai, C.-Y.; Yang, X.; Tang, Y.; Rittmann, B. E.; Zhao, H.-P. Nitrate Shaped the Selenate-Reducing Microbial Community in a Hydrogen-Based Biofilm Reactor Environ. Sci. Technol. 2014, 48 (6) 3395-3402 10.1021/es4053939
    • (2014) Environ. Sci. Technol. , vol.48 , Issue.6 , pp. 3395-3402
    • Lai, C.-Y.1    Yang, X.2    Tang, Y.3    Rittmann, B.E.4    Zhao, H.-P.5
  • 48
    • 23844494876 scopus 로고    scopus 로고
    • Autohydrogenotrophic Denitrifying Microbial Community in a Glass Beads Biofilm Reactor
    • Park, H.; Choi, Y.-J.; Pak, D. Autohydrogenotrophic Denitrifying Microbial Community in a Glass Beads Biofilm Reactor Biotechnol. Lett. 2005, 27 (13) 949-953 10.1007/s10529-005-7654-x
    • (2005) Biotechnol. Lett. , vol.27 , Issue.13 , pp. 949-953
    • Park, H.1    Choi, Y.-J.2    Pak, D.3
  • 50
    • 84899842600 scopus 로고    scopus 로고
    • Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell
    • Brown, R. K.; Harnisch, F.; Wirth, S.; Wahlandt, H.; Dockhorn, T.; Dichtl, N.; Schröder, U. Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell Bioresour. Technol. 2014, 163 (0) 206-213 10.1016/j.biortech.2014.04.044
    • (2014) Bioresour. Technol. , vol.163 , pp. 206-213
    • Brown, R.K.1    Harnisch, F.2    Wirth, S.3    Wahlandt, H.4    Dockhorn, T.5    Dichtl, N.6    Schröder, U.7
  • 51
    • 84869824633 scopus 로고    scopus 로고
    • Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: Case study
    • Escapa, A.; Gómez, X.; Tartakovsky, B.; Morán, A. Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: Case study Int. J. Hydrogen Energy 2012, 37 (24) 18641-18653 10.1016/j.ijhydene.2012.09.157
    • (2012) Int. J. Hydrogen Energy , vol.37 , Issue.24 , pp. 18641-18653
    • Escapa, A.1    Gómez, X.2    Tartakovsky, B.3    Morán, A.4
  • 52
    • 84918517242 scopus 로고    scopus 로고
    • Reactor concepts for bioelectrochemical syntheses and energy conversion
    • Krieg, T.; Sydow, A.; Schröder, U.; Schrader, J.; Holtmann, D. Reactor concepts for bioelectrochemical syntheses and energy conversion Trends Biotechnol. 2014, 32 (12) 645-655 10.1016/j.tibtech.2014.10.004
    • (2014) Trends Biotechnol. , vol.32 , Issue.12 , pp. 645-655
    • Krieg, T.1    Sydow, A.2    Schröder, U.3    Schrader, J.4    Holtmann, D.5
  • 54
    • 84921033053 scopus 로고    scopus 로고
    • Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations
    • Escapa, A.; San-Martín, M. I.; Mateos, R.; Morán, A. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations Bioresour. Technol. 2015, 180 (0) 72-78 10.1016/j.biortech.2014.12.096
    • (2015) Bioresour. Technol. , vol.180 , pp. 72-78
    • Escapa, A.1    San-Martín, M.I.2    Mateos, R.3    Morán, A.4
  • 55
    • 57049119571 scopus 로고    scopus 로고
    • The microbe electric: conversion of organic matter to electricity
    • Lovley, D. R. The microbe electric: conversion of organic matter to electricity Curr. Opin. Biotechnol. 2008, 19 (6) 564-571 10.1016/j.copbio.2008.10.005
    • (2008) Curr. Opin. Biotechnol. , vol.19 , Issue.6 , pp. 564-571
    • Lovley, D.R.1
  • 56
    • 84930011206 scopus 로고    scopus 로고
    • Electrifying White Biotechnology: Engineering and Economic Potential of Electricity-Driven Bio-Production
    • Harnisch, F.; Rosa, L. F. M.; Kracke, F.; Virdis, B.; Krömer, J. O. Electrifying White Biotechnology: Engineering and Economic Potential of Electricity-Driven Bio-Production ChemSusChem 2015, 8, 758-766 10.1002/cssc.201402736
    • (2015) ChemSusChem , vol.8 , pp. 758-766
    • Harnisch, F.1    Rosa, L.F.M.2    Kracke, F.3    Virdis, B.4    Krömer, J.O.5
  • 57
    • 78650186645 scopus 로고    scopus 로고
    • Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii
    • Demler, M.; Weuster-Botz, D. Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii Biotechnol. Bioeng. 2011, 108 (2) 470-474 10.1002/bit.22935
    • (2011) Biotechnol. Bioeng. , vol.108 , Issue.2 , pp. 470-474
    • Demler, M.1    Weuster-Botz, D.2
  • 58
    • 78650212501 scopus 로고    scopus 로고
    • Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches
    • Ni, B.-J.; Liu, H.; Nie, Y.-Q.; Zeng, R. J.; Du, G.-C.; Chen, J.; Yu, H.-Q. Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches Biotechnol. Bioeng. 2011, 108 (2) 345-353 10.1002/bit.22908
    • (2011) Biotechnol. Bioeng. , vol.108 , Issue.2 , pp. 345-353
    • Ni, B.-J.1    Liu, H.2    Nie, Y.-Q.3    Zeng, R.J.4    Du, G.-C.5    Chen, J.6    Yu, H.-Q.7
  • 59
    • 84885385895 scopus 로고    scopus 로고
    • Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor
    • Zhang, F.; Ding, J.; Zhang, Y.; Chen, M.; Ding, Z.-W.; van Loosdrecht, M. C. M.; Zeng, R. J. Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor Water Res. 2013, 47 (16) 6122-6129 10.1016/j.watres.2013.07.033
    • (2013) Water Res. , vol.47 , Issue.16 , pp. 6122-6129
    • Zhang, F.1    Ding, J.2    Zhang, Y.3    Chen, M.4    Ding, Z.-W.5    Van Loosdrecht, M.C.M.6    Zeng, R.J.7
  • 60
    • 79955561177 scopus 로고    scopus 로고
    • Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation
    • Higgins, S. R.; Foerster, D.; Cheung, A.; Lau, C.; Bretschger, O.; Minteer, S. D.; Nealson, K.; Atanassov, P.; Cooney, M. J. Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation Enzyme Microb. Technol. 2011, 48 (6-7) 458-465 10.1016/j.enzmictec.2011.02.006
    • (2011) Enzyme Microb. Technol. , vol.48 , Issue.6-7 , pp. 458-465
    • Higgins, S.R.1    Foerster, D.2    Cheung, A.3    Lau, C.4    Bretschger, O.5    Minteer, S.D.6    Nealson, K.7    Atanassov, P.8    Cooney, M.J.9
  • 61
    • 80053302155 scopus 로고    scopus 로고
    • Three-dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation
    • Katuri, K.; Ferrer, M. L.; Gutierrez, M. C.; Jimenez, R.; del Monte, F.; Leech, D. Three-dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation Energy Environ. Sci. 2011, 4 (10) 4201-4210 10.1039/c1ee01477c
    • (2011) Energy Environ. Sci. , vol.4 , Issue.10 , pp. 4201-4210
    • Katuri, K.1    Ferrer, M.L.2    Gutierrez, M.C.3    Jimenez, R.4    Del Monte, F.5    Leech, D.6
  • 62
    • 84856953893 scopus 로고    scopus 로고
    • Vertically Grown Multiwalled Carbon Nanotube Anode and Nickel Silicide Integrated High Performance Microsized (1.25 μL) Microbial Fuel Cell
    • Mink, J. E.; Rojas, J. P.; Logan, B. E.; Hussain, M. M. Vertically Grown Multiwalled Carbon Nanotube Anode and Nickel Silicide Integrated High Performance Microsized (1.25 μL) Microbial Fuel Cell Nano Lett. 2012, 12 (2) 791-795 10.1021/nl203801h
    • (2012) Nano Lett. , vol.12 , Issue.2 , pp. 791-795
    • Mink, J.E.1    Rojas, J.P.2    Logan, B.E.3    Hussain, M.M.4
  • 64
    • 84860368898 scopus 로고    scopus 로고
    • Graphene-sponges as high-performance low-cost anodes for microbial fuel cells
    • Xie, X.; Yu, G.; Liu, N.; Bao, Z.; Criddle, C. S.; Cui, Y. Graphene-sponges as high-performance low-cost anodes for microbial fuel cells Energy Environ. Sci. 2012, 5 (5) 6862-6866 10.1039/c2ee03583a
    • (2012) Energy Environ. Sci. , vol.5 , Issue.5 , pp. 6862-6866
    • Xie, X.1    Yu, G.2    Liu, N.3    Bao, Z.4    Criddle, C.S.5    Cui, Y.6
  • 65
    • 77957583742 scopus 로고    scopus 로고
    • Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes
    • Zhu, N.; Chen, X.; Zhang, T.; Wu, P.; Li, P.; Wu, J. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes Bioresour. Technol. 2011, 102 (1) 422-426 10.1016/j.biortech.2010.06.046
    • (2011) Bioresour. Technol. , vol.102 , Issue.1 , pp. 422-426
    • Zhu, N.1    Chen, X.2    Zhang, T.3    Wu, P.4    Li, P.5    Wu, J.6
  • 66
    • 83555164625 scopus 로고    scopus 로고
    • Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells
    • Zhou, M.; Chi, M.; Wang, H.; Jin, T. Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells Biochem. Eng. J. 2012, 60 (0) 151-155 10.1016/j.bej.2011.10.014
    • (2012) Biochem. Eng. J. , vol.60 , pp. 151-155
    • Zhou, M.1    Chi, M.2    Wang, H.3    Jin, T.4
  • 67
    • 84865300292 scopus 로고    scopus 로고
    • Coupling of anodic and cathodic modification for increased power generation in microbial fuel cells
    • Jin, T.; Luo, J.; Yang, J.; Zhou, L.; Zhao, Y.; Zhou, M. Coupling of anodic and cathodic modification for increased power generation in microbial fuel cells J. Power Sources 2012, 219 (0) 358-363 10.1016/j.jpowsour.2012.07.066
    • (2012) J. Power Sources , vol.219 , pp. 358-363
    • Jin, T.1    Luo, J.2    Yang, J.3    Zhou, L.4    Zhao, Y.5    Zhou, M.6
  • 68
    • 84865300292 scopus 로고    scopus 로고
    • Coupling of anodic and cathodic modification for increased power generation in microbial fuel cells
    • Jin, T.; Luo, J.; Yang, J.; Zhou, L.; Zhao, Y.; Zhou, M. Coupling of anodic and cathodic modification for increased power generation in microbial fuel cells J. Power Sources 2012, 219 (0) 358-363 10.1016/j.jpowsour.2012.07.066
    • (2012) J. Power Sources , vol.219 , pp. 358-363
    • Jin, T.1    Luo, J.2    Yang, J.3    Zhou, L.4    Zhao, Y.5    Zhou, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.