-
1
-
-
77957147094
-
Microbial electrosynthesis - revisiting the electrical route for microbial production
-
Rabaey, K.; Rozendal, R. A. Microbial electrosynthesis-revisiting the electrical route for microbial production Nat. Rev. Microbiol. 2010, 8 (10) 706-716 10.1038/nrmicro2422
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, Issue.10
, pp. 706-716
-
-
Rabaey, K.1
Rozendal, R.A.2
-
2
-
-
84878652242
-
Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
-
Lovley, D. R.; Nevin, K. P. Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity Curr. Opin. Biotechnol. 2013, 24 (3) 385-390 10.1016/j.copbio.2013.02.012
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, Issue.3
, pp. 385-390
-
-
Lovley, D.R.1
Nevin, K.P.2
-
3
-
-
79957982062
-
Metabolic and practical considerations on microbial electrosynthesis
-
Rabaey, K.; Girguis, P.; Nielsen, L. K. Metabolic and practical considerations on microbial electrosynthesis Curr. Opin. Biotechnol. 2011, 22 (3) 371-377 10.1016/j.copbio.2011.01.010
-
(2011)
Curr. Opin. Biotechnol.
, vol.22
, Issue.3
, pp. 371-377
-
-
Rabaey, K.1
Girguis, P.2
Nielsen, L.K.3
-
4
-
-
33750458683
-
Powering the Planet: Chemical Challenges in Solar Energy Utilization
-
Lewis, N. S.; Nocera, D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (43) 15729-15735 10.1073/pnas.0603395103
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, Issue.43
, pp. 15729-15735
-
-
Lewis, N.S.1
Nocera, D.G.2
-
5
-
-
79955675417
-
Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
-
Nevin, K. P.; Hensley, S. A.; Franks, A. E.; Summers, Z. M.; Ou, J.; Woodard, T. L.; Snoeyenbos-West, O. L.; Lovley, D. R. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms Appl. Environ. Microbiol. 2011, 77 (9) 2882-2886 10.1128/AEM.02642-10
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, Issue.9
, pp. 2882-2886
-
-
Nevin, K.P.1
Hensley, S.A.2
Franks, A.E.3
Summers, Z.M.4
Ou, J.5
Woodard, T.L.6
Snoeyenbos-West, O.L.7
Lovley, D.R.8
-
6
-
-
84904753488
-
A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
-
Jourdin, L.; Freguia, S.; Donose, B. C.; Chen, J.; Wallace, G. G.; Keller, J.; Flexer, V. A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis J. Mater. Chem. A 2014, 2 (32) 13093-13102 10.1039/C4TA03101F
-
(2014)
J. Mater. Chem. A
, vol.2
, Issue.32
, pp. 13093-13102
-
-
Jourdin, L.1
Freguia, S.2
Donose, B.C.3
Chen, J.4
Wallace, G.G.5
Keller, J.6
Flexer, V.7
-
7
-
-
84878637526
-
Production of fuels and chemicals from waste by microbiomes
-
Marshall, C. W.; LaBelle, E. V.; May, H. D. Production of fuels and chemicals from waste by microbiomes Curr. Opin. Biotechnol. 2013, 24 (3) 391-397 10.1016/j.copbio.2013.03.016
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, Issue.3
, pp. 391-397
-
-
Marshall, C.W.1
LaBelle, E.V.2
May, H.D.3
-
8
-
-
78650173757
-
Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
-
Nevin, K. P.; Woodard, T. L.; Franks, A. E.; Summers, Z. M.; Lovley, D. R. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds mBio 2010, 1 (2) e00103-10 10.1128/mBio.00103-10
-
(2010)
mBio
, vol.1
, Issue.2
, pp. e00103-e00110
-
-
Nevin, K.P.1
Woodard, T.L.2
Franks, A.E.3
Summers, Z.M.4
Lovley, D.R.5
-
9
-
-
84881404831
-
Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
-
Nie, H.; Zhang, T.; Cui, M.; Lu, H.; Lovley, D. R.; Russell, T. P. Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells Phys. Chem. Chem. Phys. 2013, 15 (34) 14290-14294 10.1039/c3cp52697f
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, Issue.34
, pp. 14290-14294
-
-
Nie, H.1
Zhang, T.2
Cui, M.3
Lu, H.4
Lovley, D.R.5
Russell, T.P.6
-
10
-
-
84871347686
-
Improved cathode materials for microbial electrosynthesis
-
Zhang, T.; Nie, H.; Bain, T. S.; Lu, H.; Cui, M.; Snoeyenbos-West, O. L.; Franks, A. E.; Nevin, K. P.; Russell, T. P.; Lovley, D. R. Improved cathode materials for microbial electrosynthesis Energy Environ. Sci. 2013, 6 (1) 217-224 10.1039/C2EE23350A
-
(2013)
Energy Environ. Sci.
, vol.6
, Issue.1
, pp. 217-224
-
-
Zhang, T.1
Nie, H.2
Bain, T.S.3
Lu, H.4
Cui, M.5
Snoeyenbos-West, O.L.6
Franks, A.E.7
Nevin, K.P.8
Russell, T.P.9
Lovley, D.R.10
-
11
-
-
84931262255
-
Simplifying Microbial Electrosynthesis Reactor Design
-
Giddings, C. G. S.; Nevin, K.; Woodward, T.; Lovley, D. R.; Butler, C. S. Simplifying Microbial Electrosynthesis Reactor Design. Front. Microbiol. 2015, 6. 10.3389/fmicb.2015.00468
-
(2015)
Front. Microbiol.
, vol.6
-
-
Giddings, C.G.S.1
Nevin, K.2
Woodward, T.3
Lovley, D.R.4
Butler, C.S.5
-
12
-
-
84870769198
-
Electrosynthesis of Commodity Chemicals by an Autotrophic Microbial Community
-
Marshall, C. W.; Ross, D. E.; Fichot, E. B.; Norman, R. S.; May, H. D. Electrosynthesis of Commodity Chemicals by an Autotrophic Microbial Community Appl. Environ. Microbiol. 2012, 78 (23) 8412-8420 10.1128/AEM.02401-12
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, Issue.23
, pp. 8412-8420
-
-
Marshall, C.W.1
Ross, D.E.2
Fichot, E.B.3
Norman, R.S.4
May, H.D.5
-
13
-
-
84878648156
-
Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
-
Marshall, C. W.; Ross, D. E.; Fichot, E. B.; Norman, R. S.; May, H. D. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes Environ. Sci. Technol. 2013, 47 (11) 6023-6029 10.1021/es400341b
-
(2013)
Environ. Sci. Technol.
, vol.47
, Issue.11
, pp. 6023-6029
-
-
Marshall, C.W.1
Ross, D.E.2
Fichot, E.B.3
Norman, R.S.4
May, H.D.5
-
14
-
-
84883046473
-
Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture
-
Su, M.; Jiang, Y.; Li, D. Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture J. Microbiol. Biotechnol. 2013, 23 (8) 1140-1146 10.4014/jmb.1304.04039
-
(2013)
J. Microbiol. Biotechnol.
, vol.23
, Issue.8
, pp. 1140-1146
-
-
Su, M.1
Jiang, Y.2
Li, D.3
-
15
-
-
84927559065
-
Electrifying microbes for the production of chemicals
-
Tremblay, P.-L.; Zhang, T. Electrifying microbes for the production of chemicals. Front. Microbiol. 2015, 6. 10.3389/fmicb.2015.00201
-
(2015)
Front. Microbiol.
, vol.6
-
-
Tremblay, P.-L.1
Zhang, T.2
-
16
-
-
84930010858
-
Microbial electrosynthesis of butyrate from carbon dioxide
-
Ganigue, R.; Puig, S.; Batlle-Vilanova, P.; Balaguer, M. D.; Colprim, J. Microbial electrosynthesis of butyrate from carbon dioxide Chem. Commun. 2015, 51 (15) 3235-3238 10.1039/C4CC10121A
-
(2015)
Chem. Commun.
, vol.51
, Issue.15
, pp. 3235-3238
-
-
Ganigue, R.1
Puig, S.2
Batlle-Vilanova, P.3
Balaguer, M.D.4
Colprim, J.5
-
17
-
-
84960800803
-
Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture
-
Batlle-Vilanova, P.; Puig, S.; Gonzalez-Olmos, R.; Balaguer, M. D.; Colprim, J. Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture J. Chem. Technol. Biotechnol. 2015, 10.1002/jctb.4657
-
(2015)
J. Chem. Technol. Biotechnol.
-
-
Batlle-Vilanova, P.1
Puig, S.2
Gonzalez-Olmos, R.3
Balaguer, M.D.4
Colprim, J.5
-
18
-
-
84955412403
-
Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production
-
Xafenias, N.; Mapelli, V. Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production Int. J. Hydrogen Energy 2014, 39, 21864-21875 10.1016/j.ijhydene.2014.05.038
-
(2014)
Int. J. Hydrogen Energy
, vol.39
, pp. 21864-21875
-
-
Xafenias, N.1
Mapelli, V.2
-
19
-
-
84908021230
-
Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome
-
LaBelle, E. V.; Marshall, C. W.; Gilbert, J. A.; May, H. D. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome PLoS One 2014, 9 (10) e109935 10.1371/journal.pone.0109935
-
(2014)
PLoS One
, vol.9
, Issue.10
-
-
LaBelle, E.V.1
Marshall, C.W.2
Gilbert, J.A.3
May, H.D.4
-
20
-
-
84937469006
-
Selective Enrichment Establishes a Stable Performing Community for Microbial Electrosynthesis of Acetate from CO2
-
Patil, S. A.; Arends, J. B. A.; Vanwonterghem, I.; van Meerbergen, J.; Guo, K.; Tyson, G. W.; Rabaey, K. Selective Enrichment Establishes a Stable Performing Community for Microbial Electrosynthesis of Acetate from CO2 Environ. Sci. Technol. 2015, 49 (14) 8833-8843 10.1021/es506149d
-
(2015)
Environ. Sci. Technol.
, vol.49
, Issue.14
, pp. 8833-8843
-
-
Patil, S.A.1
Arends, J.B.A.2
Vanwonterghem, I.3
Van Meerbergen, J.4
Guo, K.5
Tyson, G.W.6
Rabaey, K.7
-
21
-
-
64849109739
-
Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells
-
Chae, K.-J.; Choi, M.-J.; Lee, J.-W.; Kim, K.-Y.; Kim, I. S. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells Bioresour. Technol. 2009, 100 (14) 3518-3525 10.1016/j.biortech.2009.02.065
-
(2009)
Bioresour. Technol.
, vol.100
, Issue.14
, pp. 3518-3525
-
-
Chae, K.-J.1
Choi, M.-J.2
Lee, J.-W.3
Kim, K.-Y.4
Kim, I.S.5
-
22
-
-
84924545907
-
Engineering electrodes for microbial electrocatalysis
-
Guo, K.; Prévoteau, A.; Patil, S. A.; Rabaey, K. Engineering electrodes for microbial electrocatalysis Curr. Opin. Biotechnol. 2015, 33 (0) 149-156 10.1016/j.copbio.2015.02.014
-
(2015)
Curr. Opin. Biotechnol.
, vol.33
, pp. 149-156
-
-
Guo, K.1
Prévoteau, A.2
Patil, S.A.3
Rabaey, K.4
-
23
-
-
84875677796
-
The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems
-
Flexer, V.; Chen, J.; Donose, B. C.; Sherrell, P.; Wallace, G. G.; Keller, J. The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems Energy Environ. Sci. 2013, 6 (4) 1291-1298 10.1039/c3ee00052d
-
(2013)
Energy Environ. Sci.
, vol.6
, Issue.4
, pp. 1291-1298
-
-
Flexer, V.1
Chen, J.2
Donose, B.C.3
Sherrell, P.4
Wallace, G.G.5
Keller, J.6
-
24
-
-
0036625085
-
Application of electrophoretic and electrolytic deposition techniques in ceramics processing
-
Boccaccini, A. R.; Zhitomirsky, I. Application of electrophoretic and electrolytic deposition techniques in ceramics processing Curr. Opin. Solid State Mater. Sci. 2002, 6 (3) 251-260 10.1016/S1359-0286(02)00080-3
-
(2002)
Curr. Opin. Solid State Mater. Sci.
, vol.6
, Issue.3
, pp. 251-260
-
-
Boccaccini, A.R.1
Zhitomirsky, I.2
-
25
-
-
0030216430
-
Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics
-
Sarkar, P.; Nicholson, P. S. Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics J. Am. Ceram. Soc. 1996, 79 (8) 1987-2002 10.1111/j.1151-2916.1996.tb08929.x
-
(1996)
J. Am. Ceram. Soc.
, vol.79
, Issue.8
, pp. 1987-2002
-
-
Sarkar, P.1
Nicholson, P.S.2
-
27
-
-
0035848125
-
Electrophoresis deposition of carbon nanotubes for triode-type field emission display
-
Choi, W. B.; Jin, Y. W.; Kim, H. Y.; Lee, S. J.; Yun, M. J.; Kang, J. H.; Choi, Y. S.; Park, N. S.; Lee, N. S.; Kim, J. M. Electrophoresis deposition of carbon nanotubes for triode-type field emission display Appl. Phys. Lett. 2001, 78 (11) 1547-1549 10.1063/1.1349870
-
(2001)
Appl. Phys. Lett.
, vol.78
, Issue.11
, pp. 1547-1549
-
-
Choi, W.B.1
Jin, Y.W.2
Kim, H.Y.3
Lee, S.J.4
Yun, M.J.5
Kang, J.H.6
Choi, Y.S.7
Park, N.S.8
Lee, N.S.9
Kim, J.M.10
-
28
-
-
2342440729
-
Toward Large-Scale Integration of Carbon Nanotubes
-
Chung, J.; Lee, K.-H.; Lee, J.; Ruoff, R. S. Toward Large-Scale Integration of Carbon Nanotubes Langmuir 2004, 20 (8) 3011-3017 10.1021/la035726y
-
(2004)
Langmuir
, vol.20
, Issue.8
, pp. 3011-3017
-
-
Chung, J.1
Lee, K.-H.2
Lee, J.3
Ruoff, R.S.4
-
29
-
-
33748955983
-
Supercapacitors using carbon nanotubes films by electrophoretic deposition
-
Du, C.; Pan, N. Supercapacitors using carbon nanotubes films by electrophoretic deposition J. Power Sources 2006, 160 (2) 1487-1494 10.1016/j.jpowsour.2006.02.092
-
(2006)
J. Power Sources
, vol.160
, Issue.2
, pp. 1487-1494
-
-
Du, C.1
Pan, N.2
-
30
-
-
6044256332
-
High power electrochemical capacitors based on carbon nanotube electrodes
-
Niu, C.; Sichel, E. K.; Hoch, R.; Moy, D.; Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes Appl. Phys. Lett. 1997, 70 (11) 1480-1482 10.1063/1.118568
-
(1997)
Appl. Phys. Lett.
, vol.70
, Issue.11
, pp. 1480-1482
-
-
Niu, C.1
Sichel, E.K.2
Hoch, R.3
Moy, D.4
Tennent, H.5
-
31
-
-
33646541989
-
Electrophoretic deposition of carbon nanotubes on metallic surfaces
-
Vol.
-
Thomas, B. J. C.; Shaffer, M. S. P.; Freeman, S.; Koopman, M.; Chawla, K. K.; Boccaccini, A. R. Electrophoretic deposition of carbon nanotubes on metallic surfaces. Key Eng. Mater., 2006; Vol. 314, pp 141-146. 10.4028/www.scientific.net/KEM.314.141
-
(2006)
Key Eng. Mater.
, vol.314
, pp. 141-146
-
-
Thomas, B.J.C.1
Shaffer, M.S.P.2
Freeman, S.3
Koopman, M.4
Chawla, K.K.5
Boccaccini, A.R.6
-
32
-
-
84865272068
-
Electrophoretic deposition under modulated electric fields: a review
-
Ammam, M. Electrophoretic deposition under modulated electric fields: a review RSC Adv. 2012, 2 (20) 7633-7646 10.1039/c2ra01342h
-
(2012)
RSC Adv.
, vol.2
, Issue.20
, pp. 7633-7646
-
-
Ammam, M.1
-
33
-
-
80053307107
-
Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation
-
Higashi, M.; Domen, K.; Abe, R. Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation Energy Environ. Sci. 2011, 4 (10) 4138-4147 10.1039/c1ee01878g
-
(2011)
Energy Environ. Sci.
, vol.4
, Issue.10
, pp. 4138-4147
-
-
Higashi, M.1
Domen, K.2
Abe, R.3
-
34
-
-
77951169987
-
Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition
-
An, S. J.; Zhu, Y.; Lee, S. H.; Stoller, M. D.; Emilsson, T.; Park, S.; Velamakanni, A.; An, J.; Ruoff, R. S. Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition J. Phys. Chem. Lett. 2010, 1 (8) 1259-1263 10.1021/jz100080c
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, Issue.8
, pp. 1259-1263
-
-
An, S.J.1
Zhu, Y.2
Lee, S.H.3
Stoller, M.D.4
Emilsson, T.5
Park, S.6
Velamakanni, A.7
An, J.8
Ruoff, R.S.9
-
35
-
-
0344062813
-
Reticulated vitreous carbon as an electrode material
-
Friedrich, J. M.; Ponce-de-León, C.; Reade, G. W.; Walsh, F. C. Reticulated vitreous carbon as an electrode material J. Electroanal. Chem. 2004, 561 (0) 203-217 10.1016/j.jelechem.2003.07.019
-
(2004)
J. Electroanal. Chem.
, vol.561
, pp. 203-217
-
-
Friedrich, J.M.1
Ponce-De-León, C.2
Reade, G.W.3
Walsh, F.C.4
-
36
-
-
84884227179
-
Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms
-
Flexer, V.; Marque, M.; Donose, B. C.; Virdis, B.; Keller, J. Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms Electrochim. Acta 2013, 108 (0) 566-574 10.1016/j.electacta.2013.06.145
-
(2013)
Electrochim. Acta
, vol.108
, pp. 566-574
-
-
Flexer, V.1
Marque, M.2
Donose, B.C.3
Virdis, B.4
Keller, J.5
-
37
-
-
84916629365
-
Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source
-
Jourdin, L.; Freguia, S.; Donose, B. C.; Keller, J. Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source Bioelectrochemistry 2015, 102 (0) 56-63 10.1016/j.bioelechem.2014.12.001
-
(2015)
Bioelectrochemistry
, vol.102
, pp. 56-63
-
-
Jourdin, L.1
Freguia, S.2
Donose, B.C.3
Keller, J.4
-
38
-
-
27644564237
-
Multi-walled carbon nanotube coatings using Electrophoretic Deposition (EPD)
-
Thomas, B. J. C.; Boccaccini, A. R.; Shaffer, M. S. P. Multi-walled carbon nanotube coatings using Electrophoretic Deposition (EPD) J. Am. Ceram. Soc. 2005, 88 (4) 980-982 10.1111/j.1551-2916.2005.00155.x
-
(2005)
J. Am. Ceram. Soc.
, vol.88
, Issue.4
, pp. 980-982
-
-
Thomas, B.J.C.1
Boccaccini, A.R.2
Shaffer, M.S.P.3
-
39
-
-
33750373807
-
Electrophoretic deposition of carbon nanotubes
-
Boccaccini, A. R.; Cho, J.; Roether, J. A.; Thomas, B. J. C.; Jane Minay, E.; Shaffer, M. S. P. Electrophoretic deposition of carbon nanotubes Carbon 2006, 44 (15) 3149-3160 10.1016/j.carbon.2006.06.021
-
(2006)
Carbon
, vol.44
, Issue.15
, pp. 3149-3160
-
-
Boccaccini, A.R.1
Cho, J.2
Roether, J.A.3
Thomas, B.J.C.4
Jane Minay, E.5
Shaffer, M.S.P.6
-
40
-
-
44049105889
-
Succinic acid: a new platform chemical for biobased polymers from renewable resources
-
Bechthold, I.; Bretz, K.; Kabasci, S.; Kopitzky, R.; Springer, A. Succinic acid: a new platform chemical for biobased polymers from renewable resources Chem. Eng. Technol. 2008, 31 (5) 647-654 10.1002/ceat.200800063
-
(2008)
Chem. Eng. Technol.
, vol.31
, Issue.5
, pp. 647-654
-
-
Bechthold, I.1
Bretz, K.2
Kabasci, S.3
Kopitzky, R.4
Springer, A.5
-
41
-
-
78751627523
-
Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform
-
Agler, M. T.; Wrenn, B. A.; Zinder, S. H.; Angenent, L. T. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform Trends Biotechnol. 2011, 29 (2) 70-78 10.1016/j.tibtech.2010.11.006
-
(2011)
Trends Biotechnol.
, vol.29
, Issue.2
, pp. 70-78
-
-
Agler, M.T.1
Wrenn, B.A.2
Zinder, S.H.3
Angenent, L.T.4
-
42
-
-
40949122427
-
Hydrogen production with a microbial biocathode
-
Rozendal, R. A.; Jeremiasse, A. W.; Hamelers, H. V. M; Buisman, C. J. N. Hydrogen production with a microbial biocathode Environ. Sci. Technol. 2008, 42 (2) 629-634 10.1021/es071720+
-
(2008)
Environ. Sci. Technol.
, vol.42
, Issue.2
, pp. 629-634
-
-
Rozendal, R.A.1
Jeremiasse, A.W.2
Hamelers, H.V.M.3
Buisman, C.J.N.4
-
43
-
-
0021909106
-
Acetoanaerobium noterae gen. nov., sp. nov.: an Anaerobic Bacterium That Forms Acetate from H2 and CO2
-
Sleat, R.; Mah, R. A.; Robinson, R. Acetoanaerobium noterae gen. nov., sp. nov.: an Anaerobic Bacterium That Forms Acetate from H2 and CO2 Int. J. Syst. Bacteriol. 1985, 35 (1) 10-15 10.1099/00207713-35-1-10
-
(1985)
Int. J. Syst. Bacteriol.
, vol.35
, Issue.1
, pp. 10-15
-
-
Sleat, R.1
Mah, R.A.2
Robinson, R.3
-
44
-
-
0024333565
-
Hydrogenophaga, a New Genus of Hydrogen-Oxidizing Bacteria That Includes Hydrogenophaga flava comb. nov. (Formerly Pseudomonas flava), Hydrogenophaga palleronii (Formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (Formerly Pseudomonas pseudoflava and "Pseudomonas carboxydoflava"), and Hydrogenophaga taeniospiralis (Formerly Pseudomonas taeniospiralis)
-
WILLEMS, A.; BUSSE, J.; GOOR, M.; POT, B.; FALSEN, E.; JANTZEN, E.; HOSTE, B.; GILLIS, M.; KERSTERS, K.; AULING, G.; DE LEY, J. Hydrogenophaga, a New Genus of Hydrogen-Oxidizing Bacteria That Includes Hydrogenophaga flava comb. nov. (Formerly Pseudomonas flava), Hydrogenophaga palleronii (Formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (Formerly Pseudomonas pseudoflava and "Pseudomonas carboxydoflava"), and Hydrogenophaga taeniospiralis (Formerly Pseudomonas taeniospiralis) Int. J. Syst. Bacteriol. 1989, 39 (3) 319-333 10.1099/00207713-39-3-319
-
(1989)
Int. J. Syst. Bacteriol.
, vol.39
, Issue.3
, pp. 319-333
-
-
Willems, A.1
Busse, J.2
Goor, M.3
Pot, B.4
Falsen, E.5
Jantzen, E.6
Hoste, B.7
Gillis, M.8
Kersters, K.9
Auling, G.10
De Ley, J.11
-
45
-
-
84883636434
-
Hydrogenophaga electricum sp. nov., isolated from anodic biofilms of an acetate-fed microbial fuel cell
-
Kimura, Z.-i.; Okabe, S. Hydrogenophaga electricum sp. nov., isolated from anodic biofilms of an acetate-fed microbial fuel cell J. Gen. Appl. Microbiol. 2013, 59 (4) 261-266 10.2323/jgam.59.261
-
(2013)
J. Gen. Appl. Microbiol.
, vol.59
, Issue.4
, pp. 261-266
-
-
Kimura, Z.-I.1
Okabe, S.2
-
46
-
-
84880922468
-
Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen
-
Kimura, Z. I.; Okabe, S. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen ISME J. 2013, 7 (8) 1472-1482 10.1038/ismej.2013.40
-
(2013)
ISME J.
, vol.7
, Issue.8
, pp. 1472-1482
-
-
Kimura, Z.I.1
Okabe, S.2
-
47
-
-
84899014516
-
Nitrate Shaped the Selenate-Reducing Microbial Community in a Hydrogen-Based Biofilm Reactor
-
Lai, C.-Y.; Yang, X.; Tang, Y.; Rittmann, B. E.; Zhao, H.-P. Nitrate Shaped the Selenate-Reducing Microbial Community in a Hydrogen-Based Biofilm Reactor Environ. Sci. Technol. 2014, 48 (6) 3395-3402 10.1021/es4053939
-
(2014)
Environ. Sci. Technol.
, vol.48
, Issue.6
, pp. 3395-3402
-
-
Lai, C.-Y.1
Yang, X.2
Tang, Y.3
Rittmann, B.E.4
Zhao, H.-P.5
-
48
-
-
23844494876
-
Autohydrogenotrophic Denitrifying Microbial Community in a Glass Beads Biofilm Reactor
-
Park, H.; Choi, Y.-J.; Pak, D. Autohydrogenotrophic Denitrifying Microbial Community in a Glass Beads Biofilm Reactor Biotechnol. Lett. 2005, 27 (13) 949-953 10.1007/s10529-005-7654-x
-
(2005)
Biotechnol. Lett.
, vol.27
, Issue.13
, pp. 949-953
-
-
Park, H.1
Choi, Y.-J.2
Pak, D.3
-
50
-
-
84899842600
-
Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell
-
Brown, R. K.; Harnisch, F.; Wirth, S.; Wahlandt, H.; Dockhorn, T.; Dichtl, N.; Schröder, U. Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell Bioresour. Technol. 2014, 163 (0) 206-213 10.1016/j.biortech.2014.04.044
-
(2014)
Bioresour. Technol.
, vol.163
, pp. 206-213
-
-
Brown, R.K.1
Harnisch, F.2
Wirth, S.3
Wahlandt, H.4
Dockhorn, T.5
Dichtl, N.6
Schröder, U.7
-
51
-
-
84869824633
-
Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: Case study
-
Escapa, A.; Gómez, X.; Tartakovsky, B.; Morán, A. Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: Case study Int. J. Hydrogen Energy 2012, 37 (24) 18641-18653 10.1016/j.ijhydene.2012.09.157
-
(2012)
Int. J. Hydrogen Energy
, vol.37
, Issue.24
, pp. 18641-18653
-
-
Escapa, A.1
Gómez, X.2
Tartakovsky, B.3
Morán, A.4
-
52
-
-
84918517242
-
Reactor concepts for bioelectrochemical syntheses and energy conversion
-
Krieg, T.; Sydow, A.; Schröder, U.; Schrader, J.; Holtmann, D. Reactor concepts for bioelectrochemical syntheses and energy conversion Trends Biotechnol. 2014, 32 (12) 645-655 10.1016/j.tibtech.2014.10.004
-
(2014)
Trends Biotechnol.
, vol.32
, Issue.12
, pp. 645-655
-
-
Krieg, T.1
Sydow, A.2
Schröder, U.3
Schrader, J.4
Holtmann, D.5
-
53
-
-
54349124054
-
Scaling up Microbial Fuel Cells
-
Dewan, A.; Beyenal, H.; Lewandowski, Z. Scaling up Microbial Fuel Cells Environ. Sci. Technol. 2008, 42 (20) 7643-7648 10.1021/es800775d
-
(2008)
Environ. Sci. Technol.
, vol.42
, Issue.20
, pp. 7643-7648
-
-
Dewan, A.1
Beyenal, H.2
Lewandowski, Z.3
-
54
-
-
84921033053
-
Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations
-
Escapa, A.; San-Martín, M. I.; Mateos, R.; Morán, A. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations Bioresour. Technol. 2015, 180 (0) 72-78 10.1016/j.biortech.2014.12.096
-
(2015)
Bioresour. Technol.
, vol.180
, pp. 72-78
-
-
Escapa, A.1
San-Martín, M.I.2
Mateos, R.3
Morán, A.4
-
55
-
-
57049119571
-
The microbe electric: conversion of organic matter to electricity
-
Lovley, D. R. The microbe electric: conversion of organic matter to electricity Curr. Opin. Biotechnol. 2008, 19 (6) 564-571 10.1016/j.copbio.2008.10.005
-
(2008)
Curr. Opin. Biotechnol.
, vol.19
, Issue.6
, pp. 564-571
-
-
Lovley, D.R.1
-
56
-
-
84930011206
-
Electrifying White Biotechnology: Engineering and Economic Potential of Electricity-Driven Bio-Production
-
Harnisch, F.; Rosa, L. F. M.; Kracke, F.; Virdis, B.; Krömer, J. O. Electrifying White Biotechnology: Engineering and Economic Potential of Electricity-Driven Bio-Production ChemSusChem 2015, 8, 758-766 10.1002/cssc.201402736
-
(2015)
ChemSusChem
, vol.8
, pp. 758-766
-
-
Harnisch, F.1
Rosa, L.F.M.2
Kracke, F.3
Virdis, B.4
Krömer, J.O.5
-
57
-
-
78650186645
-
Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii
-
Demler, M.; Weuster-Botz, D. Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii Biotechnol. Bioeng. 2011, 108 (2) 470-474 10.1002/bit.22935
-
(2011)
Biotechnol. Bioeng.
, vol.108
, Issue.2
, pp. 470-474
-
-
Demler, M.1
Weuster-Botz, D.2
-
58
-
-
78650212501
-
Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches
-
Ni, B.-J.; Liu, H.; Nie, Y.-Q.; Zeng, R. J.; Du, G.-C.; Chen, J.; Yu, H.-Q. Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches Biotechnol. Bioeng. 2011, 108 (2) 345-353 10.1002/bit.22908
-
(2011)
Biotechnol. Bioeng.
, vol.108
, Issue.2
, pp. 345-353
-
-
Ni, B.-J.1
Liu, H.2
Nie, Y.-Q.3
Zeng, R.J.4
Du, G.-C.5
Chen, J.6
Yu, H.-Q.7
-
59
-
-
84885385895
-
Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor
-
Zhang, F.; Ding, J.; Zhang, Y.; Chen, M.; Ding, Z.-W.; van Loosdrecht, M. C. M.; Zeng, R. J. Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor Water Res. 2013, 47 (16) 6122-6129 10.1016/j.watres.2013.07.033
-
(2013)
Water Res.
, vol.47
, Issue.16
, pp. 6122-6129
-
-
Zhang, F.1
Ding, J.2
Zhang, Y.3
Chen, M.4
Ding, Z.-W.5
Van Loosdrecht, M.C.M.6
Zeng, R.J.7
-
60
-
-
79955561177
-
Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation
-
Higgins, S. R.; Foerster, D.; Cheung, A.; Lau, C.; Bretschger, O.; Minteer, S. D.; Nealson, K.; Atanassov, P.; Cooney, M. J. Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation Enzyme Microb. Technol. 2011, 48 (6-7) 458-465 10.1016/j.enzmictec.2011.02.006
-
(2011)
Enzyme Microb. Technol.
, vol.48
, Issue.6-7
, pp. 458-465
-
-
Higgins, S.R.1
Foerster, D.2
Cheung, A.3
Lau, C.4
Bretschger, O.5
Minteer, S.D.6
Nealson, K.7
Atanassov, P.8
Cooney, M.J.9
-
61
-
-
80053302155
-
Three-dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation
-
Katuri, K.; Ferrer, M. L.; Gutierrez, M. C.; Jimenez, R.; del Monte, F.; Leech, D. Three-dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation Energy Environ. Sci. 2011, 4 (10) 4201-4210 10.1039/c1ee01477c
-
(2011)
Energy Environ. Sci.
, vol.4
, Issue.10
, pp. 4201-4210
-
-
Katuri, K.1
Ferrer, M.L.2
Gutierrez, M.C.3
Jimenez, R.4
Del Monte, F.5
Leech, D.6
-
62
-
-
84856953893
-
Vertically Grown Multiwalled Carbon Nanotube Anode and Nickel Silicide Integrated High Performance Microsized (1.25 μL) Microbial Fuel Cell
-
Mink, J. E.; Rojas, J. P.; Logan, B. E.; Hussain, M. M. Vertically Grown Multiwalled Carbon Nanotube Anode and Nickel Silicide Integrated High Performance Microsized (1.25 μL) Microbial Fuel Cell Nano Lett. 2012, 12 (2) 791-795 10.1021/nl203801h
-
(2012)
Nano Lett.
, vol.12
, Issue.2
, pp. 791-795
-
-
Mink, J.E.1
Rojas, J.P.2
Logan, B.E.3
Hussain, M.M.4
-
63
-
-
84855163636
-
Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes
-
Xie, X.; Ye, M.; Hu, L.; Liu, N.; McDonough, J. R.; Chen, W.; Alshareef, H. N.; Criddle, C. S.; Cui, Y. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes Energy Environ. Sci. 2012, 5 (1) 5265-5270 10.1039/C1EE02122B
-
(2012)
Energy Environ. Sci.
, vol.5
, Issue.1
, pp. 5265-5270
-
-
Xie, X.1
Ye, M.2
Hu, L.3
Liu, N.4
McDonough, J.R.5
Chen, W.6
Alshareef, H.N.7
Criddle, C.S.8
Cui, Y.9
-
64
-
-
84860368898
-
Graphene-sponges as high-performance low-cost anodes for microbial fuel cells
-
Xie, X.; Yu, G.; Liu, N.; Bao, Z.; Criddle, C. S.; Cui, Y. Graphene-sponges as high-performance low-cost anodes for microbial fuel cells Energy Environ. Sci. 2012, 5 (5) 6862-6866 10.1039/c2ee03583a
-
(2012)
Energy Environ. Sci.
, vol.5
, Issue.5
, pp. 6862-6866
-
-
Xie, X.1
Yu, G.2
Liu, N.3
Bao, Z.4
Criddle, C.S.5
Cui, Y.6
-
65
-
-
77957583742
-
Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes
-
Zhu, N.; Chen, X.; Zhang, T.; Wu, P.; Li, P.; Wu, J. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes Bioresour. Technol. 2011, 102 (1) 422-426 10.1016/j.biortech.2010.06.046
-
(2011)
Bioresour. Technol.
, vol.102
, Issue.1
, pp. 422-426
-
-
Zhu, N.1
Chen, X.2
Zhang, T.3
Wu, P.4
Li, P.5
Wu, J.6
-
66
-
-
83555164625
-
Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells
-
Zhou, M.; Chi, M.; Wang, H.; Jin, T. Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells Biochem. Eng. J. 2012, 60 (0) 151-155 10.1016/j.bej.2011.10.014
-
(2012)
Biochem. Eng. J.
, vol.60
, pp. 151-155
-
-
Zhou, M.1
Chi, M.2
Wang, H.3
Jin, T.4
-
67
-
-
84865300292
-
Coupling of anodic and cathodic modification for increased power generation in microbial fuel cells
-
Jin, T.; Luo, J.; Yang, J.; Zhou, L.; Zhao, Y.; Zhou, M. Coupling of anodic and cathodic modification for increased power generation in microbial fuel cells J. Power Sources 2012, 219 (0) 358-363 10.1016/j.jpowsour.2012.07.066
-
(2012)
J. Power Sources
, vol.219
, pp. 358-363
-
-
Jin, T.1
Luo, J.2
Yang, J.3
Zhou, L.4
Zhao, Y.5
Zhou, M.6
-
68
-
-
84865300292
-
Coupling of anodic and cathodic modification for increased power generation in microbial fuel cells
-
Jin, T.; Luo, J.; Yang, J.; Zhou, L.; Zhao, Y.; Zhou, M. Coupling of anodic and cathodic modification for increased power generation in microbial fuel cells J. Power Sources 2012, 219 (0) 358-363 10.1016/j.jpowsour.2012.07.066
-
(2012)
J. Power Sources
, vol.219
, pp. 358-363
-
-
Jin, T.1
Luo, J.2
Yang, J.3
Zhou, L.4
Zhao, Y.5
Zhou, M.6
|