-
1
-
-
78751627523
-
Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform
-
Agler, M. T., Wrenn, B. A., Zinder, S. H., and Angenent, L. T. (2011). Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol. 29, 70-78. doi: 10.1016/j.tibtech.2010.11.006.
-
(2011)
Trends Biotechnol
, vol.29
, pp. 70-78
-
-
Agler, M.T.1
Wrenn, B.A.2
Zinder, S.H.3
Angenent, L.T.4
-
2
-
-
84948391131
-
Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO 2 reduction
-
Blanchet, E., Duquenne, F., Rafrafi, Y., Etcheverry, L., Erable, B., and Bergel, A. (2015). Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO 2 reduction. Energy Environ. Sci. 8, 3731-3744. doi: 10.1039/C5EE03088A.
-
(2015)
Energy Environ. Sci
, vol.8
, pp. 3731-3744
-
-
Blanchet, E.1
Duquenne, F.2
Rafrafi, Y.3
Etcheverry, L.4
Erable, B.5
Bergel, A.6
-
3
-
-
66249100237
-
Direct biological conversion of electrical current into methane by electromethanogenesis
-
Cheng, S., Xing, D., Call, D. F., and Logan, B. E. (2009). Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953-3958. doi: 10.1021/es803531g.
-
(2009)
Environ. Sci. Technol
, vol.43
, pp. 3953-3958
-
-
Cheng, S.1
Xing, D.2
Call, D.F.3
Logan, B.E.4
-
4
-
-
84928776576
-
Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis
-
Deutzmann, J. S., Sahin, M., and Spormann, A. M. (2015). Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. MBio 6, e00496-415. doi: 10.1128/mbio.00496-15.
-
(2015)
MBio
, vol.6
-
-
Deutzmann, J.S.1
Sahin, M.2
Spormann, A.M.3
-
5
-
-
0036141751
-
High quality diesel via the Fischer-Tropsch process-a review
-
Dry, M. E. (2002). High quality diesel via the Fischer-Tropsch process-a review. J. Chem. Technol. Biotechnol. 77, 43-50. doi: 10.1002/jctb.527.
-
(2002)
J. Chem. Technol. Biotechnol
, vol.77
, pp. 43-50
-
-
Dry, M.E.1
-
6
-
-
84956965933
-
Electrochemical conversion of carbon dioxide into renewable fuel chemicals-The role of nanomaterials and the commercialization
-
Ganesh, I. (2016). Electrochemical conversion of carbon dioxide into renewable fuel chemicals-The role of nanomaterials and the commercialization. Renewable Sustain. Ener. Rev. 59, 1269-1297. doi: 10.1016/j.rser.2016.01.026.
-
(2016)
Renewable Sustain. Ener. Rev
, vol.59
, pp. 1269-1297
-
-
Ganesh, I.1
-
7
-
-
84931262255
-
Simplifying microbial electrosynthesis reactor design
-
Giddings, C. G., Nevin, K. P., Woodward, T., Lovley, D. R., and Butler, C. S. (2015). Simplifying microbial electrosynthesis reactor design. Front. Microbiol. 6:468. doi: 10.3389/fmicb.2015.00468.
-
(2015)
Front. Microbiol
, vol.6
, pp. 468
-
-
Giddings, C.G.1
Nevin, K.P.2
Woodward, T.3
Lovley, D.R.4
Butler, C.S.5
-
8
-
-
84944441735
-
Renewable power-to-gas: a technological and economic review
-
Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., et al. (2016). Renewable power-to-gas: a technological and economic review. Renewable Ener. 85, 1371-1390. doi: 10.1016/j.renene.2015.07.066.
-
(2016)
Renewable Ener
, vol.85
, pp. 1371-1390
-
-
Götz, M.1
Lefebvre, J.2
Mörs, F.3
McDaniel Koch, A.4
Graf, F.5
Bajohr, S.6
-
9
-
-
84973447611
-
-
Google Patent
-
Heijstra, B. D., Kern, E., Koepke, M., Segovia, S., and Liew, F. M. (2013). Novel Bacteria and Methods of Use Thereof. Google Patent No US20130217096A.
-
(2013)
Novel Bacteria and Methods of Use Thereof
-
-
Heijstra, B.D.1
Kern, E.2
Koepke, M.3
Segovia, S.4
Liew, F.M.5
-
10
-
-
84958281101
-
Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation throughiImproved electrode design and operating conditions
-
Jourdin, L., Freguia, S., Flexer, V., and Keller, J. (2016a). Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation throughiImproved electrode design and operating conditions. Environ. Sci. Technol. 50, 1982-1989. doi: 10.1021/acs.est.5b04431.
-
(2016)
Environ. Sci. Technol
, vol.50
, pp. 1982-1989
-
-
Jourdin, L.1
Freguia, S.2
Flexer, V.3
Keller, J.4
-
11
-
-
84947251258
-
High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide
-
Jourdin, L., Grieger, T., Monetti, J., Flexer, V., Freguia, S., Lu, Y., et al. (2015). High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environ. Sci. Technol. 49, 13566-13574. doi: 10.1021/acs.est.5b03821.
-
(2015)
Environ. Sci. Technol
, vol.49
, pp. 13566-13574
-
-
Jourdin, L.1
Grieger, T.2
Monetti, J.3
Flexer, V.4
Freguia, S.5
Lu, Y.6
-
12
-
-
84954305774
-
Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide
-
Jourdin, L., Lu, Y., Flexer, V., Keller, J., and Freguia, S. (2016b). Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide. ChemElectroChem. 3, 581-591. doi: 10.1002/celc.201500530.
-
(2016)
ChemElectroChem
, vol.3
, pp. 581-591
-
-
Jourdin, L.1
Lu, Y.2
Flexer, V.3
Keller, J.4
Freguia, S.5
-
13
-
-
55049114595
-
Effects of pH conditions on the biological conversion of carbon dioxide to methane in a hollow-fiber membrane biofilm reactor (Hf-MBfR)
-
Ju, D.-H., Shin, J.-H., Lee, H.-K., Kong, S.-H., Kim, J.-I., and Sang, B.-I. (2008). Effects of pH conditions on the biological conversion of carbon dioxide to methane in a hollow-fiber membrane biofilm reactor (Hf-MBfR). Desalination 234, 409-415. doi: 10.1016/j.desal.2007.09.111.
-
(2008)
Desalination
, vol.234
, pp. 409-415
-
-
Ju, D.-H.1
Shin, J.-H.2
Lee, H.-K.3
Kong, S.-H.4
Kim, J.-I.5
Sang, B.-I.6
-
14
-
-
84978792850
-
Is there a specific ecological niche for electroactive microorganisms?
-
Koch, C., and Harnisch, F. (2016). Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem. 3, 1282-1295. doi: 10.1002/celc.201600079.
-
(2016)
ChemElectroChem
, vol.3
, pp. 1282-1295
-
-
Koch, C.1
Harnisch, F.2
-
15
-
-
84918517242
-
Reactor concepts for bioelectrochemical syntheses and energy conversion
-
Krieg, T., Sydow, A., Schröder, U., Schrader, J., and Holtmann, D. (2014). Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol. 32, 645-655. doi: 10.1016/j.tibtech.2014.10.004.
-
(2014)
Trends Biotechnol
, vol.32
, pp. 645-655
-
-
Krieg, T.1
Sydow, A.2
Schröder, U.3
Schrader, J.4
Holtmann, D.5
-
16
-
-
0029327335
-
CO2 reduction to methane and acetate using a bio-electro reactor with immobilized methanogens and homoacetogens on electrodes
-
Kuroda, M., and Watanabe, T. (1995). CO2 reduction to methane and acetate using a bio-electro reactor with immobilized methanogens and homoacetogens on electrodes. Ener. Conversion Manage. 36, 787-790. doi: 10.1016/0196-8904(95)00122-T.
-
(1995)
Ener. Conversion Manage
, vol.36
, pp. 787-790
-
-
Kuroda, M.1
Watanabe, T.2
-
17
-
-
84973449735
-
Gas fermentation-a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks
-
Liew, F., Martin, M. E., Tappel, R. C., Heijstra, B. D., Mihalcea, C., and Köpke, M. (2016). Gas fermentation-a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front. Microbiol. 7:694. doi: 10.3389/fmicb.2016.00694.
-
(2016)
Front. Microbiol
, vol.7
, pp. 694
-
-
Liew, F.1
Martin, M.E.2
Tappel, R.C.3
Heijstra, B.D.4
Mihalcea, C.5
Köpke, M.6
-
18
-
-
84930951543
-
"Gas fermentation for commercial biofuels production"
-
ed Z. Fang (InTech)
-
Liew, F. M., Köpke, M., and Simpson, S. D. (2013). "Gas fermentation for commercial biofuels production", in Liquid, Gaseous and Solid Biofuels-Conversion Techniques, ed Z. Fang (InTech), 125-173.
-
(2013)
Liquid, Gaseous and Solid Biofuels-Conversion Techniques
, pp. 125-173
-
-
Liew, F.M.1
Köpke, M.2
Simpson, S.D.3
-
19
-
-
84870016648
-
Electromicrobiolgy
-
Lovley, D. R. (2012). Electromicrobiolgy. Ann Review Microbiol. 66, 391-409. doi: 10.1146/annurev-micro-092611-150104.
-
(2012)
Ann Review Microbiol
, vol.66
, pp. 391-409
-
-
Lovley, D.R.1
-
20
-
-
84878652242
-
Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
-
Lovley, D. R., and Nevin, K. P. (2013). Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol. 24, 385-390. doi: 10.1016/j.copbio.2013.02.012.
-
(2013)
Curr. Opin. Biotechnol
, vol.24
, pp. 385-390
-
-
Lovley, D.R.1
Nevin, K.P.2
-
21
-
-
84891471544
-
Microbial nanowires for bioenergy applications
-
Malvankar, N. S., and Lovley, D. R. (2014). Microbial nanowires for bioenergy applications. Curr. Opin. Biotechnol. 27, 88-95. doi: 10.1016/j.copbio.2013.12.003.
-
(2014)
Curr. Opin. Biotechnol
, vol.27
, pp. 88-95
-
-
Malvankar, N.S.1
Lovley, D.R.2
-
22
-
-
84878637526
-
Production of fuels and chemicals from waste by microbiomes
-
Marshall, C. W., Labelle, E. V., and May, H. D. (2013). Production of fuels and chemicals from waste by microbiomes. Curr. Opin. Biotechnol. 24, 391-397. doi: 10.1016/j.copbio.2013.03.016.
-
(2013)
Curr. Opin. Biotechnol
, vol.24
, pp. 391-397
-
-
Marshall, C.W.1
Labelle, E.V.2
May, H.D.3
-
23
-
-
84870769198
-
Electrosynthesis of commodity chemicals by an autotrophic microbial community
-
Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S., and May, H. D. (2012). Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl. Environ. Microbiol. 78, 8412-8420. doi: 10.1128/AEM.02401-12.
-
(2012)
Appl. Environ. Microbiol
, vol.78
, pp. 8412-8420
-
-
Marshall, C.W.1
Ross, D.E.2
Fichot, E.B.3
Norman, R.S.4
May, H.D.5
-
24
-
-
84866012621
-
The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments
-
Martin, K. J., and Nerenberg, R. (2012). The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour. Technol. 122, 83-94. doi: 10.1016/j.biortech.2012.02.110.
-
(2012)
Bioresour. Technol
, vol.122
, pp. 83-94
-
-
Martin, K.J.1
Nerenberg, R.2
-
25
-
-
84886513288
-
A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2
-
Martin, M. R., Fornero, J. J., Strak, R., Lets, L., and Angenent, L. T. (2013). A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2. Archaea 2013:157529. doi: 10.1155/2013/157529.
-
(2013)
Archaea
, vol.2013
-
-
Martin, M.R.1
Fornero, J.J.2
Strak, R.3
Lets, L.4
Angenent, L.T.5
-
26
-
-
84991687602
-
The bioelectrosynthesis of acetate
-
May, H. D., Evans, P. J., and Labelle, E. V. (2016). The bioelectrosynthesis of acetate. Curr. Opin. Biotechnol. 42, 225-233. doi: 10.1016/j.copbio.2016.09.004.
-
(2016)
Curr. Opin. Biotechnol
, vol.42
, pp. 225-233
-
-
May, H.D.1
Evans, P.J.2
Labelle, E.V.3
-
27
-
-
84963676465
-
Carbon recovery by fermentation of CO-rich off gases-Turning steel mills into biorefineries
-
Molitor, B., Richter, H., Martin, M. E., Jensen, R. O., Juminaga, A., Mihalcea, C., et al. (2016). Carbon recovery by fermentation of CO-rich off gases-Turning steel mills into biorefineries. Bioresour. Technol. 215, 386-396. doi: 10.1016/j.biortech.2016.03.094.
-
(2016)
Bioresour. Technol
, vol.215
, pp. 386-396
-
-
Molitor, B.1
Richter, H.2
Martin, M.E.3
Jensen, R.O.4
Juminaga, A.5
Mihalcea, C.6
-
28
-
-
79955675417
-
Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
-
Nevin, K. P., Hensley, S. A., Franks, A. E., Summers, Z. M., Ou, J., Woodard, T. L., et al. (2011). Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77, 2882-2886. doi: 10.1128/AEM.02642-10.
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 2882-2886
-
-
Nevin, K.P.1
Hensley, S.A.2
Franks, A.E.3
Summers, Z.M.4
Ou, J.5
Woodard, T.L.6
-
29
-
-
78650173757
-
Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
-
Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., and Lovley, D. R. (2010). Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1, e00103-110. doi: 10.1128/mBio.00103-10.
-
(2010)
MBio
, vol.1
-
-
Nevin, K.P.1
Woodard, T.L.2
Franks, A.E.3
Summers, Z.M.4
Lovley, D.R.5
-
30
-
-
84937469006
-
Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2
-
Patil, S. A., Arends, J. B., Vanwonterghem, I., Van Meerbergen, J., Guo, K., Tyson, G. W., et al. (2015). Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2. Environ. Sci. Technol. 49, 8833-8843. doi: 10.1021/es506149d.
-
(2015)
Environ. Sci. Technol
, vol.49
, pp. 8833-8843
-
-
Patil, S.A.1
Arends, J.B.2
Vanwonterghem, I.3
Van Meerbergen, J.4
Guo, K.5
Tyson, G.W.6
-
31
-
-
84897491978
-
Engineering microbial electrocatalysis for chemical and fuel production
-
Rosenbaum, M. A., and Henrich, A. W. (2014). Engineering microbial electrocatalysis for chemical and fuel production. Curr. Opin. Biotechnol. 29, 93-98. doi: 10.1016/j.copbio.2014.03.003.
-
(2014)
Curr. Opin. Biotechnol
, vol.29
, pp. 93-98
-
-
Rosenbaum, M.A.1
Henrich, A.W.2
-
32
-
-
77957359097
-
Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?
-
Rosenbaum, M., Aulenta, F., Villano, M., and Angenent, L. T. (2011). Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour. Technol. 102, 324-333. doi: 10.1016/j.biortech.2010.07.008.
-
(2011)
Bioresour. Technol
, vol.102
, pp. 324-333
-
-
Rosenbaum, M.1
Aulenta, F.2
Villano, M.3
Angenent, L.T.4
-
33
-
-
84938880111
-
Link between capacity for current production and syntrophic growth in Geobacter species
-
Rotaru, A.-E., Woodard, T. L., Nevin, K. P., and Lovley, D. R. (2015). Link between capacity for current production and syntrophic growth in Geobacter species. Front. Microbiol. 6:744. doi: 10.3389/fmicb.2015.00744.
-
(2015)
Front. Microbiol
, vol.6
, pp. 744
-
-
Rotaru, A.-E.1
Woodard, T.L.2
Nevin, K.P.3
Lovley, D.R.4
-
34
-
-
84962325618
-
Electro-stimulated microbial factory for value added product synthesis
-
Roy, S., Schievano, A., and Pant, D. (2016). Electro-stimulated microbial factory for value added product synthesis. Bioresour. Technol. 213, 129-139. doi: 10.1016/j.biortech.2016.03.052.
-
(2016)
Bioresour. Technol
, vol.213
, pp. 129-139
-
-
Roy, S.1
Schievano, A.2
Pant, D.3
-
35
-
-
84927559065
-
Electrifying microbes for the production of chemicals
-
Tremblay, P.-L., and Zhang, T. (2015). Electrifying microbes for the production of chemicals. Front. Microbiol. 6:201. doi: 10.3389/fmicb.2015.00201.
-
(2015)
Front. Microbiol
, vol.6
, pp. 201
-
-
Tremblay, P.-L.1
Zhang, T.2
-
36
-
-
84908433337
-
Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii
-
Ueki, T., Nevin, K. P., Woodard, T. L., and Lovley, D. R. (2014). Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. MBio 5, e01636-e01614. doi: 10.1128/mBio.01636-14.
-
(2014)
MBio
, vol.5
-
-
Ueki, T.1
Nevin, K.P.2
Woodard, T.L.3
Lovley, D.R.4
-
37
-
-
26444467516
-
Bioelectrosynthesis as an alternative to photosynthesis
-
Varfolomeyev, S. D. (1992). Bioelectrosynthesis as an alternative to photosynthesis. Appl. Biochem. Biotechnol. 33, 145-155. doi: 10.1007/BF02950783.
-
(1992)
Appl. Biochem. Biotechnol
, vol.33
, pp. 145-155
-
-
Varfolomeyev, S.D.1
-
38
-
-
74649087256
-
Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture
-
Villano, M., Aulenta, F., Ciucci, C., Ferri, T., Giuliano, A., and Majone, M. (2010). Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101, 3085-3090. doi: 10.1016/j.biortech.2009.12.077.
-
(2010)
Bioresour. Technol
, vol.101
, pp. 3085-3090
-
-
Villano, M.1
Aulenta, F.2
Ciucci, C.3
Ferri, T.4
Giuliano, A.5
Majone, M.6
|