-
1
-
-
84904890558
-
Plugging in or going wireless: strategies for interspecies electron transfer
-
1 Shrestha, P.M., Rotaru, A.-E., Plugging in or going wireless: strategies for interspecies electron transfer. Front. Microbiol., 5, 2014, 237.
-
(2014)
Front. Microbiol.
, vol.5
, pp. 237
-
-
Shrestha, P.M.1
Rotaru, A.-E.2
-
2
-
-
84931262210
-
Microbial interspecies interactions: recent findings in syntrophic consortia
-
2 Kouzuma, A., et al. Microbial interspecies interactions: recent findings in syntrophic consortia. Front. Microbiol., 13, 2015, 477.
-
(2015)
Front. Microbiol.
, vol.13
, pp. 477
-
-
Kouzuma, A.1
-
3
-
-
84902107299
-
Critical review: microbially influenced corrosion of buried carbon steel pipes
-
3 Usher, K.M., et al. Critical review: microbially influenced corrosion of buried carbon steel pipes. Int. Biodeterior. Biodegradation 93 (2014), 84–106.
-
(2014)
Int. Biodeterior. Biodegradation
, vol.93
, pp. 84-106
-
-
Usher, K.M.1
-
4
-
-
0004197556
-
Corrosion Cost and Preventive Strategies in the United States
-
Federal Highway Administration
-
4 Koch, G.H., et al. Corrosion Cost and Preventive Strategies in the United States. 2002, Federal Highway Administration.
-
(2002)
-
-
Koch, G.H.1
-
5
-
-
0030871461
-
Energetics of syntrophic cooperation in methanogenic degradation
-
5 Schink, B., Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61 (1997), 262–280.
-
(1997)
Microbiol. Mol. Biol. Rev.
, vol.61
, pp. 262-280
-
-
Schink, B.1
-
6
-
-
70449894893
-
Syntrophy in anaerobic global carbon cycles
-
6 McInerney, M.J., et al. Syntrophy in anaerobic global carbon cycles. Curr. Opin. Biotechnol. 20 (2009), 623–632.
-
(2009)
Curr. Opin. Biotechnol.
, vol.20
, pp. 623-632
-
-
McInerney, M.J.1
-
7
-
-
84917694522
-
Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor
-
7 Kato, S., et al. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl. Environ. Microbiol. 81 (2015), 67–73.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 67-73
-
-
Kato, S.1
-
8
-
-
84878652242
-
Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
-
8 Lovley, D.R., Nevin, K.P., Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol. 24 (2013), 385–390.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 385-390
-
-
Lovley, D.R.1
Nevin, K.P.2
-
9
-
-
77957147094
-
Microbial electrosynthesis – revisiting the electrical route for microbial production
-
9 Rabaey, K., Rozendal, R.A., Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8 (2010), 706–716.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, pp. 706-716
-
-
Rabaey, K.1
Rozendal, R.A.2
-
10
-
-
66249100237
-
Direct biological conversion of electrical current into methane by electromethanogenesis
-
10 Cheng, S., et al. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43 (2009), 3953–3958.
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 3953-3958
-
-
Cheng, S.1
-
11
-
-
74649087256
-
4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture
-
4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101 (2010), 3085–3090.
-
(2010)
Bioresour. Technol.
, vol.101
, pp. 3085-3090
-
-
Villano, M.1
-
12
-
-
78650173757
-
Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
-
12 Nevin, K.P., et al. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1 (2010), e00103–e00110.
-
(2010)
MBio
, vol.1
, pp. e00103-e00110
-
-
Nevin, K.P.1
-
13
-
-
84946763572
-
2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources
-
2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources. Front. Microbiol., 6, 2015, 994.
-
(2015)
Front. Microbiol.
, vol.6
, pp. 994
-
-
Ishii, T.1
-
14
-
-
84969234067
-
Toward electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: enhancing current uptake with Rhodopseudomonas palustris
-
14 Doud, D.F.R., Angenent, L.T., Toward electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: enhancing current uptake with Rhodopseudomonas palustris. Environ. Sci. Technol. Lett. 1 (2014), 351–355.
-
(2014)
Environ. Sci. Technol. Lett.
, vol.1
, pp. 351-355
-
-
Doud, D.F.R.1
Angenent, L.T.2
-
15
-
-
84866556635
-
Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell
-
15 Khunjar, W.O., et al. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell. PLoS One, 7, 2012, e44846.
-
(2012)
PLoS One
, vol.7
, pp. e44846
-
-
Khunjar, W.O.1
-
16
-
-
84870769198
-
Electrosynthesis of commodity chemicals by an autotrophic microbial community
-
16 Marshall, C.W., et al. Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl. Environ. Microbiol. 78 (2012), 8412–8420.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 8412-8420
-
-
Marshall, C.W.1
-
17
-
-
84859111827
-
2 to higher alcohols
-
2 to higher alcohols. Science, 335, 2012, 1596.
-
(2012)
Science
, vol.335
, pp. 1596
-
-
Li, H.1
-
18
-
-
77957359097
-
Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?
-
18 Rosenbaum, M., et al. Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?. Bioresour. Technol. 102 (2011), 324–333.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 324-333
-
-
Rosenbaum, M.1
-
20
-
-
43049109495
-
Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system
-
20 Aulenta, F., et al. Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system. Electrochim. Acta 53 (2008), 5300–5305.
-
(2008)
Electrochim. Acta
, vol.53
, pp. 5300-5305
-
-
Aulenta, F.1
-
21
-
-
34548229516
-
Electrochemical reactions of carbon dioxide
-
Wiley-VCH
-
21 DuBois, D.L., Electrochemical reactions of carbon dioxide. Encyclopedia of Electrochemistry, vol. 7A, 2007, Wiley-VCH, 202–225.
-
(2007)
Encyclopedia of Electrochemistry
, vol.vol. 7A
, pp. 202-225
-
-
DuBois, D.L.1
-
22
-
-
84928776576
-
Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis
-
22 Deutzmann, J.S., et al. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. MBio 6 (2015), e00496–e00515.
-
(2015)
MBio
, vol.6
, pp. e00496-e00515
-
-
Deutzmann, J.S.1
-
23
-
-
84908413509
-
Electron uptake by iron-oxidizing phototrophic bacteria
-
23 Bose, A., et al. Electron uptake by iron-oxidizing phototrophic bacteria. Nat. Commun., 5, 2014, 3391.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3391
-
-
Bose, A.1
-
24
-
-
84914182434
-
Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon
-
24 Beese-Vasbender, P.F., et al. Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon. Bioelectrochemistry 102 (2015), 50–55.
-
(2015)
Bioelectrochemistry
, vol.102
, pp. 50-55
-
-
Beese-Vasbender, P.F.1
-
25
-
-
84949214899
-
An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction
-
25 Mohanakrishna, G., et al. An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction. Faraday Discuss. 183 (2015), 445–462.
-
(2015)
Faraday Discuss.
, vol.183
, pp. 445-462
-
-
Mohanakrishna, G.1
-
26
-
-
84874589923
-
Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes
-
e00420-412
-
26 Summers, Z.M., et al. Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. MBio, 4, 2013 e00420-412.
-
(2013)
MBio
, vol.4
-
-
Summers, Z.M.1
-
27
-
-
77956937778
-
Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen
-
27 Carbajosa, S., et al. Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen. Biosens. Bioelectron. 26 (2010), 877–880.
-
(2010)
Biosens. Bioelectron.
, vol.26
, pp. 877-880
-
-
Carbajosa, S.1
-
28
-
-
84871574438
-
2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes
-
2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes. Electrochem. Commun. 28 (2013), 27–30.
-
(2013)
Electrochem. Commun.
, vol.28
, pp. 27-30
-
-
Soussan, L.1
-
29
-
-
2642520659
-
Graphite electrodes as electron donors for anaerobic respiration
-
29 Gregory, K.B., et al. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6 (2004), 596–604.
-
(2004)
Environ. Microbiol.
, vol.6
, pp. 596-604
-
-
Gregory, K.B.1
-
30
-
-
27744521813
-
Remediation and recovery of uranium from contaminated subsurface environments with electrodes
-
30 Gregory, K.B., Lovley, D.R., Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39 (2005), 8943–8947.
-
(2005)
Environ. Sci. Technol.
, vol.39
, pp. 8943-8947
-
-
Gregory, K.B.1
Lovley, D.R.2
-
31
-
-
77956648802
-
Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities
-
31 Mori, K., et al. Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. J. Biosci. Bioeng. 110 (2010), 426–430.
-
(2010)
J. Biosci. Bioeng.
, vol.110
, pp. 426-430
-
-
Mori, K.1
-
32
-
-
1542378939
-
Iron corrosion by novel anaerobic microorganisms
-
32 Dinh, H.T., et al. Iron corrosion by novel anaerobic microorganisms. Nature 427 (2004), 829–832.
-
(2004)
Nature
, vol.427
, pp. 829-832
-
-
Dinh, H.T.1
-
33
-
-
84869496805
-
Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria
-
33 Venzlaff, H., et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros. Sci. 66 (2013), 88–96.
-
(2013)
Corros. Sci.
, vol.66
, pp. 88-96
-
-
Venzlaff, H.1
-
34
-
-
84936930771
-
Electron extraction from an extracellular electrode by Desulfovibrio ferrophilus strain IS5 without using hydrogen as an electron carrier
-
34 Deng, X., et al. Electron extraction from an extracellular electrode by Desulfovibrio ferrophilus strain IS5 without using hydrogen as an electron carrier. Electrochemistry 83 (2015), 529–531.
-
(2015)
Electrochemistry
, vol.83
, pp. 529-531
-
-
Deng, X.1
-
35
-
-
77749260571
-
Iron-corroding methanogen isolated from a crude-oil storage tank
-
35 Uchiyama, T., et al. Iron-corroding methanogen isolated from a crude-oil storage tank. Appl. Environ. Microbiol. 76 (2010), 1783–1788.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 1783-1788
-
-
Uchiyama, T.1
-
36
-
-
0026928527
-
Effects of selection and fate of substrates supplied to anaerobic bacteria involved in the corrosion of pipe-line steel
-
36 Dowling, N.J.E., et al. Effects of selection and fate of substrates supplied to anaerobic bacteria involved in the corrosion of pipe-line steel. J. Ind. Microbiol. 10 (1992), 207–215.
-
(1992)
J. Ind. Microbiol.
, vol.10
, pp. 207-215
-
-
Dowling, N.J.E.1
-
37
-
-
84866148210
-
Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes
-
37 Pisciotta, J.M., et al. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl. Environ. Microbiol. 78 (2012), 5212–5219.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 5212-5219
-
-
Pisciotta, J.M.1
-
38
-
-
84922894984
-
Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1
-
38 Iino, T., et al. Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl. Environ. Microbiol. 81 (2015), 1839–1846.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 1839-1846
-
-
Iino, T.1
-
39
-
-
84943575185
-
Prolixibacter denitrificans sp. nov., an iron-corroding, facultatively aerobic, nitrate-reducing bacterium isolated from crude oil, and emended descriptions of the genus Prolixibacter and Prolixibacter bellariivorans
-
39 Iino, T., et al. Prolixibacter denitrificans sp. nov., an iron-corroding, facultatively aerobic, nitrate-reducing bacterium isolated from crude oil, and emended descriptions of the genus Prolixibacter and Prolixibacter bellariivorans. Int. J. Syst. Evol. Microbiol. 65 (2015), 2865–2869.
-
(2015)
Int. J. Syst. Evol. Microbiol.
, vol.65
, pp. 2865-2869
-
-
Iino, T.1
-
40
-
-
84891624031
-
The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism
-
40 Sieber, J.R., et al. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Environ. Microbiol. 16 (2014), 177–188.
-
(2014)
Environ. Microbiol.
, vol.16
, pp. 177-188
-
-
Sieber, J.R.1
-
41
-
-
84927511397
-
Syntrophic growth via quinone-mediated interspecies electron transfer
-
41 Smith, J.A., et al. Syntrophic growth via quinone-mediated interspecies electron transfer. Front. Microbiol., 6, 2015, 121.
-
(2015)
Front. Microbiol.
, vol.6
, pp. 121
-
-
Smith, J.A.1
-
42
-
-
84869882273
-
Zero-valent sulphur is a key intermediate in marine methane oxidation
-
42 Milucka, J., et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491 (2012), 541–546.
-
(2012)
Nature
, vol.491
, pp. 541-546
-
-
Milucka, J.1
-
43
-
-
0036281752
-
Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes
-
43 Kaden, J., et al. Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Arch. Microbiol. 178 (2002), 53–58.
-
(2002)
Arch. Microbiol.
, vol.178
, pp. 53-58
-
-
Kaden, J.1
-
44
-
-
78649707496
-
Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
-
44 Summers, Z.M., et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330 (2010), 1413–1415.
-
(2010)
Science
, vol.330
, pp. 1413-1415
-
-
Summers, Z.M.1
-
45
-
-
84890454863
-
A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
-
45 Rotaru, A.-E., et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 7 (2014), 408–415.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 408-415
-
-
Rotaru, A.-E.1
-
46
-
-
84929494201
-
Structural basis for metallic-like conductivity in microbial nanowires
-
46 Malvankar, N.S., et al. Structural basis for metallic-like conductivity in microbial nanowires. MBio, 6, 2015, e00084.
-
(2015)
MBio
, vol.6
, pp. e00084
-
-
Malvankar, N.S.1
-
47
-
-
80052557316
-
Tunable metallic-like conductivity in microbial nanowire networks
-
47 Malvankar, N.S., et al. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6 (2011), 573–579.
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 573-579
-
-
Malvankar, N.S.1
-
48
-
-
84880037294
-
Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens
-
48 Vargas, M., et al. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4 (2013), e00105–e00113.
-
(2013)
MBio
, vol.4
, pp. e00105-e00113
-
-
Vargas, M.1
-
49
-
-
84962241772
-
Thermally activated charge transport in microbial protein nanowires
-
49 Lampa-Pastirk, S., et al. Thermally activated charge transport in microbial protein nanowires. Sci. Rep., 6, 2016, 23517.
-
(2016)
Sci. Rep.
, vol.6
, pp. 23517
-
-
Lampa-Pastirk, S.1
-
50
-
-
84939803262
-
Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations
-
50 Feliciano, G.T., et al. Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations. Phys. Chem. Chem. Phys. 17 (2015), 22217–22226.
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 22217-22226
-
-
Feliciano, G.T.1
-
51
-
-
84948844904
-
Thermally activated long range electron transport in living biofilms
-
51 Yates, M.D., et al. Thermally activated long range electron transport in living biofilms. Phys. Chem. Chem. Phys. 17 (2015), 32564–32570.
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 32564-32570
-
-
Yates, M.D.1
-
52
-
-
84866525384
-
Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven
-
52 Snider, R.M., et al. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proc. Natl Acad. Sci. U.S.A. 109 (2012), 15467–15472.
-
(2012)
Proc. Natl Acad. Sci. U.S.A.
, vol.109
, pp. 15467-15472
-
-
Snider, R.M.1
-
53
-
-
84985896555
-
The relay network of Geobacter biofilms
-
53 Ordóñez, M.V., et al. The relay network of Geobacter biofilms. Energy Environ. Sci. 9 (2016), 2677–2681.
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 2677-2681
-
-
Ordóñez, M.V.1
-
54
-
-
78650170320
-
Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens
-
54 Strycharz, S.M., et al. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80 (2011), 142–150.
-
(2011)
Bioelectrochemistry
, vol.80
, pp. 142-150
-
-
Strycharz, S.M.1
-
55
-
-
84873861133
-
Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens
-
55 Smith, J.A., et al. Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. Appl. Environ. Microbiol. 79 (2013), 901–907.
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, pp. 901-907
-
-
Smith, J.A.1
-
56
-
-
77953645311
-
Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens
-
56 Leang, C., et al. Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl. Environ. Microbiol. 76 (2010), 4080–4084.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 4080-4084
-
-
Leang, C.1
-
57
-
-
84907956666
-
2): an innovative method for biogas upgrading
-
2): an innovative method for biogas upgrading. Bioresour. Technol. 173 (2014), 392–398.
-
(2014)
Bioresour. Technol.
, vol.173
, pp. 392-398
-
-
Xu, H.1
-
58
-
-
84945289920
-
Single cell activity reveals direct electron transfer in methanotrophic consortia
-
58 McGlynn, S.E., et al. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526 (2015), 531–535.
-
(2015)
Nature
, vol.526
, pp. 531-535
-
-
McGlynn, S.E.1
-
59
-
-
84944755142
-
Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria
-
59 Wegener, G., et al. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526 (2015), 587–590.
-
(2015)
Nature
, vol.526
, pp. 587-590
-
-
Wegener, G.1
-
60
-
-
84926029595
-
Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria
-
60 Byrne, J.M., et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347 (2015), 1473–1476.
-
(2015)
Science
, vol.347
, pp. 1473-1476
-
-
Byrne, J.M.1
-
61
-
-
84924965830
-
Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange
-
61 Liu, F., et al. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ. Microbiol. 17 (2015), 648–655.
-
(2015)
Environ. Microbiol.
, vol.17
, pp. 648-655
-
-
Liu, F.1
-
62
-
-
84870050017
-
Promoting direct interspecies electron transfer with activated carbon
-
62 Liu, F., et al. Promoting direct interspecies electron transfer with activated carbon. Energy Environ. Sci. 5 (2012), 8982–8989.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 8982-8989
-
-
Liu, F.1
-
63
-
-
84862535140
-
Microbial interspecies electron transfer via electric currents through conductive minerals
-
63 Kato, S., et al. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl Acad. Sci. U.S.A. 109 (2012), 10042–10046.
-
(2012)
Proc. Natl Acad. Sci. U.S.A.
, vol.109
, pp. 10042-10046
-
-
Kato, S.1
-
64
-
-
84883508876
-
Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community
-
64 Jiang, S., et al. Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community. Environ. Sci. Technol. 47 (2013), 10078–10084.
-
(2013)
Environ. Sci. Technol.
, vol.47
, pp. 10078-10084
-
-
Jiang, S.1
-
65
-
-
84928978320
-
Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate
-
65 Yamada, C., et al. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. J. Biosci. Bioeng. 119 (2015), 678–682.
-
(2015)
J. Biosci. Bioeng.
, vol.119
, pp. 678-682
-
-
Yamada, C.1
-
66
-
-
84928266457
-
Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments
-
66 Li, H., et al. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environ. Microbiol. 17 (2015), 1533–1547.
-
(2015)
Environ. Microbiol.
, vol.17
, pp. 1533-1547
-
-
Li, H.1
-
67
-
-
84897609033
-
Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion
-
67 De Vrieze, J., et al. Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. Water Res. 54 (2014), 211–221.
-
(2014)
Water Res.
, vol.54
, pp. 211-221
-
-
De Vrieze, J.1
-
68
-
-
84903692745
-
Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation
-
68 Cruz Viggi, C., et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ. Sci. Technol. 48 (2014), 7536–7543.
-
(2014)
Environ. Sci. Technol.
, vol.48
, pp. 7536-7543
-
-
Cruz Viggi, C.1
-
69
-
-
84946762063
-
2 to organic products
-
2 to organic products. Sci. Rep., 5, 2015, 16168.
-
(2015)
Sci. Rep.
, vol.5
, pp. 16168
-
-
Tremblay, P.-L.1
-
70
-
-
84927517075
-
Microbial electroreduction: screening for new cathodic biocatalysts
-
70 de Campos Rodrigues, T., Rosenbaum, M.A., Microbial electroreduction: screening for new cathodic biocatalysts. ChemElectroChem 1 (2014), 1916–1922.
-
(2014)
ChemElectroChem
, vol.1
, pp. 1916-1922
-
-
de Campos Rodrigues, T.1
Rosenbaum, M.A.2
-
71
-
-
84927559065
-
Electrifying microbes for the production of chemicals
-
71 Tremblay, P.-L., Zhang, T., Electrifying microbes for the production of chemicals. Front. Microbiol., 6, 2015, 201.
-
(2015)
Front. Microbiol.
, vol.6
, pp. 201
-
-
Tremblay, P.-L.1
Zhang, T.2
-
72
-
-
84973164089
-
2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine
-
2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine. J. Mater. Chem. A 4 (2016), 8395–8401.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 8395-8401
-
-
Chen, L.1
-
73
-
-
84954305774
-
Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide
-
73 Jourdin, L., et al. Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide. ChemElectroChem 3 (2016), 581–591.
-
(2016)
ChemElectroChem
, vol.3
, pp. 581-591
-
-
Jourdin, L.1
-
74
-
-
84872258879
-
Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell
-
74 Villano, M., et al. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresour. Technol. 130 (2013), 366–371.
-
(2013)
Bioresour. Technol.
, vol.130
, pp. 366-371
-
-
Villano, M.1
-
75
-
-
84901612043
-
Utilization of surplus electricity from wind power for dynamic biogas upgrading: Northern Germany case study
-
75 Jürgensen, L., et al. Utilization of surplus electricity from wind power for dynamic biogas upgrading: Northern Germany case study. Biomass Bioenerg. 66 (2014), 126–132.
-
(2014)
Biomass Bioenerg.
, vol.66
, pp. 126-132
-
-
Jürgensen, L.1
-
76
-
-
84931262255
-
Simplifying microbial electrosynthesis reactor design
-
76 Giddings, C.G.S., et al. Simplifying microbial electrosynthesis reactor design. Front. Microbiol., 6, 2015, 468.
-
(2015)
Front. Microbiol.
, vol.6
, pp. 468
-
-
Giddings, C.G.S.1
-
77
-
-
84905648721
-
Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions
-
77 Luo, X., et al. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions. Environ. Sci. Technol. 48 (2014), 8911–8918.
-
(2014)
Environ. Sci. Technol.
, vol.48
, pp. 8911-8918
-
-
Luo, X.1
-
78
-
-
84902596879
-
Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams
-
78 Andersen, S.J., et al. Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. Environ. Sci. Technol. 48 (2014), 7135–7142.
-
(2014)
Environ. Sci. Technol.
, vol.48
, pp. 7135-7142
-
-
Andersen, S.J.1
-
79
-
-
84969195348
-
2 through microbial electrosynthesis
-
2 through microbial electrosynthesis. Environ. Sci. Technol. Lett. 2 (2015), 325–328.
-
(2015)
Environ. Sci. Technol. Lett.
, vol.2
, pp. 325-328
-
-
Gildemyn, S.1
-
80
-
-
84926645424
-
In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis
-
80 Xu, J., et al. In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis. Chem. Commun. 51 (2015), 6847–6850.
-
(2015)
Chem. Commun.
, vol.51
, pp. 6847-6850
-
-
Xu, J.1
-
81
-
-
84941662879
-
Hybrid bioinorganic approach to solar-to-chemical conversion
-
81 Nichols, E.M., et al. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc. Natl Acad. Sci. U.S.A. 112 (2015), 11461–11466.
-
(2015)
Proc. Natl Acad. Sci. U.S.A.
, vol.112
, pp. 11461-11466
-
-
Nichols, E.M.1
-
82
-
-
84929190956
-
Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals
-
82 Liu, C., et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15 (2015), 3634–3639.
-
(2015)
Nano Lett.
, vol.15
, pp. 3634-3639
-
-
Liu, C.1
-
83
-
-
84923676034
-
Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system
-
83 Torella, J.P., et al. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proc. Natl Acad. Sci. U.S.A. 112 (2015), 2337–2342.
-
(2015)
Proc. Natl Acad. Sci. U.S.A.
, vol.112
, pp. 2337-2342
-
-
Torella, J.P.1
-
84
-
-
84974678646
-
2 reduction efficiencies exceeding photosynthesis
-
2 reduction efficiencies exceeding photosynthesis. Science 352 (2016), 1210–1213.
-
(2016)
Science
, vol.352
, pp. 1210-1213
-
-
Liu, C.1
-
85
-
-
84946917743
-
More efficient together
-
85 Zhang, T., More efficient together. Science 350 (2015), 738–739.
-
(2015)
Science
, vol.350
, pp. 738-739
-
-
Zhang, T.1
-
86
-
-
84964314828
-
Towards synthetic biological approaches to resource utilization on space missions
-
86 Menezes, A.A., et al. Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface, 12, 2015, 20140715.
-
(2015)
J. R. Soc. Interface
, vol.12
, pp. 20140715
-
-
Menezes, A.A.1
-
87
-
-
84945453220
-
Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode
-
87 Bajracharya, S., et al. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour. Technol. 195 (2015), 14–24.
-
(2015)
Bioresour. Technol.
, vol.195
, pp. 14-24
-
-
Bajracharya, S.1
-
88
-
-
84994406842
-
2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis
-
2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis. Bioelectrochemistry 113 (2017), 26–34.
-
(2017)
Bioelectrochemistry
, vol.113
, pp. 26-34
-
-
Bajracharya, S.1
-
89
-
-
84938483224
-
Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell
-
89 Zeppilli, M., et al. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell. Environ. Sci. Pollut. Res. Int. 22 (2015), 7349–7360.
-
(2015)
Environ. Sci. Pollut. Res. Int.
, vol.22
, pp. 7349-7360
-
-
Zeppilli, M.1
-
90
-
-
84908021230
-
Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome
-
90 LaBelle, E.V., et al. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome. PLoS One, 9, 2014, e109935.
-
(2014)
PLoS One
, vol.9
, pp. e109935
-
-
LaBelle, E.V.1
-
91
-
-
84908433337
-
Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii
-
e01636-1614
-
91 Ueki, T., et al. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. MBio, 5, 2014 e01636-1614.
-
(2014)
MBio
, vol.5
-
-
Ueki, T.1
-
92
-
-
84947251258
-
High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide
-
92 Jourdin, L., et al. High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environ. Sci. Technol. 49 (2015), 13566–13574.
-
(2015)
Environ. Sci. Technol.
, vol.49
, pp. 13566-13574
-
-
Jourdin, L.1
|