메뉴 건너뛰기




Volumn 35, Issue 4, 2017, Pages 360-371

Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces

Author keywords

biocorrosion; extracellular electron transfer; interspecies electron transfer; microbial electrosynthesis

Indexed keywords

BACTERIA; BIODEGRADATION; CARBON DIOXIDE; CORROSION; ELECTRODES; ELECTRON TRANSITIONS; ENZYME ELECTRODES; GREENHOUSE GASES; MICROORGANISMS; WASTEWATER TREATMENT;

EID: 85005917697     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2016.10.004     Document Type: Review
Times cited : (171)

References (92)
  • 1
    • 84904890558 scopus 로고    scopus 로고
    • Plugging in or going wireless: strategies for interspecies electron transfer
    • 1 Shrestha, P.M., Rotaru, A.-E., Plugging in or going wireless: strategies for interspecies electron transfer. Front. Microbiol., 5, 2014, 237.
    • (2014) Front. Microbiol. , vol.5 , pp. 237
    • Shrestha, P.M.1    Rotaru, A.-E.2
  • 2
    • 84931262210 scopus 로고    scopus 로고
    • Microbial interspecies interactions: recent findings in syntrophic consortia
    • 2 Kouzuma, A., et al. Microbial interspecies interactions: recent findings in syntrophic consortia. Front. Microbiol., 13, 2015, 477.
    • (2015) Front. Microbiol. , vol.13 , pp. 477
    • Kouzuma, A.1
  • 3
    • 84902107299 scopus 로고    scopus 로고
    • Critical review: microbially influenced corrosion of buried carbon steel pipes
    • 3 Usher, K.M., et al. Critical review: microbially influenced corrosion of buried carbon steel pipes. Int. Biodeterior. Biodegradation 93 (2014), 84–106.
    • (2014) Int. Biodeterior. Biodegradation , vol.93 , pp. 84-106
    • Usher, K.M.1
  • 4
    • 0004197556 scopus 로고    scopus 로고
    • Corrosion Cost and Preventive Strategies in the United States
    • Federal Highway Administration
    • 4 Koch, G.H., et al. Corrosion Cost and Preventive Strategies in the United States. 2002, Federal Highway Administration.
    • (2002)
    • Koch, G.H.1
  • 5
    • 0030871461 scopus 로고    scopus 로고
    • Energetics of syntrophic cooperation in methanogenic degradation
    • 5 Schink, B., Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61 (1997), 262–280.
    • (1997) Microbiol. Mol. Biol. Rev. , vol.61 , pp. 262-280
    • Schink, B.1
  • 6
    • 70449894893 scopus 로고    scopus 로고
    • Syntrophy in anaerobic global carbon cycles
    • 6 McInerney, M.J., et al. Syntrophy in anaerobic global carbon cycles. Curr. Opin. Biotechnol. 20 (2009), 623–632.
    • (2009) Curr. Opin. Biotechnol. , vol.20 , pp. 623-632
    • McInerney, M.J.1
  • 7
    • 84917694522 scopus 로고    scopus 로고
    • Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor
    • 7 Kato, S., et al. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl. Environ. Microbiol. 81 (2015), 67–73.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 67-73
    • Kato, S.1
  • 8
    • 84878652242 scopus 로고    scopus 로고
    • Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
    • 8 Lovley, D.R., Nevin, K.P., Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol. 24 (2013), 385–390.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 385-390
    • Lovley, D.R.1    Nevin, K.P.2
  • 9
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis – revisiting the electrical route for microbial production
    • 9 Rabaey, K., Rozendal, R.A., Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8 (2010), 706–716.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 10
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • 10 Cheng, S., et al. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43 (2009), 3953–3958.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 3953-3958
    • Cheng, S.1
  • 11
    • 74649087256 scopus 로고    scopus 로고
    • 4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture
    • 4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101 (2010), 3085–3090.
    • (2010) Bioresour. Technol. , vol.101 , pp. 3085-3090
    • Villano, M.1
  • 12
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • 12 Nevin, K.P., et al. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1 (2010), e00103–e00110.
    • (2010) MBio , vol.1 , pp. e00103-e00110
    • Nevin, K.P.1
  • 13
    • 84946763572 scopus 로고    scopus 로고
    • 2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources
    • 2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources. Front. Microbiol., 6, 2015, 994.
    • (2015) Front. Microbiol. , vol.6 , pp. 994
    • Ishii, T.1
  • 14
    • 84969234067 scopus 로고    scopus 로고
    • Toward electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: enhancing current uptake with Rhodopseudomonas palustris
    • 14 Doud, D.F.R., Angenent, L.T., Toward electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: enhancing current uptake with Rhodopseudomonas palustris. Environ. Sci. Technol. Lett. 1 (2014), 351–355.
    • (2014) Environ. Sci. Technol. Lett. , vol.1 , pp. 351-355
    • Doud, D.F.R.1    Angenent, L.T.2
  • 15
    • 84866556635 scopus 로고    scopus 로고
    • Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell
    • 15 Khunjar, W.O., et al. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell. PLoS One, 7, 2012, e44846.
    • (2012) PLoS One , vol.7 , pp. e44846
    • Khunjar, W.O.1
  • 16
    • 84870769198 scopus 로고    scopus 로고
    • Electrosynthesis of commodity chemicals by an autotrophic microbial community
    • 16 Marshall, C.W., et al. Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl. Environ. Microbiol. 78 (2012), 8412–8420.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 8412-8420
    • Marshall, C.W.1
  • 17
    • 84859111827 scopus 로고    scopus 로고
    • 2 to higher alcohols
    • 2 to higher alcohols. Science, 335, 2012, 1596.
    • (2012) Science , vol.335 , pp. 1596
    • Li, H.1
  • 18
    • 77957359097 scopus 로고    scopus 로고
    • Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?
    • 18 Rosenbaum, M., et al. Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?. Bioresour. Technol. 102 (2011), 324–333.
    • (2011) Bioresour. Technol. , vol.102 , pp. 324-333
    • Rosenbaum, M.1
  • 20
    • 43049109495 scopus 로고    scopus 로고
    • Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system
    • 20 Aulenta, F., et al. Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system. Electrochim. Acta 53 (2008), 5300–5305.
    • (2008) Electrochim. Acta , vol.53 , pp. 5300-5305
    • Aulenta, F.1
  • 21
    • 34548229516 scopus 로고    scopus 로고
    • Electrochemical reactions of carbon dioxide
    • Wiley-VCH
    • 21 DuBois, D.L., Electrochemical reactions of carbon dioxide. Encyclopedia of Electrochemistry, vol. 7A, 2007, Wiley-VCH, 202–225.
    • (2007) Encyclopedia of Electrochemistry , vol.vol. 7A , pp. 202-225
    • DuBois, D.L.1
  • 22
    • 84928776576 scopus 로고    scopus 로고
    • Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis
    • 22 Deutzmann, J.S., et al. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. MBio 6 (2015), e00496–e00515.
    • (2015) MBio , vol.6 , pp. e00496-e00515
    • Deutzmann, J.S.1
  • 23
    • 84908413509 scopus 로고    scopus 로고
    • Electron uptake by iron-oxidizing phototrophic bacteria
    • 23 Bose, A., et al. Electron uptake by iron-oxidizing phototrophic bacteria. Nat. Commun., 5, 2014, 3391.
    • (2014) Nat. Commun. , vol.5 , pp. 3391
    • Bose, A.1
  • 24
    • 84914182434 scopus 로고    scopus 로고
    • Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon
    • 24 Beese-Vasbender, P.F., et al. Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon. Bioelectrochemistry 102 (2015), 50–55.
    • (2015) Bioelectrochemistry , vol.102 , pp. 50-55
    • Beese-Vasbender, P.F.1
  • 25
    • 84949214899 scopus 로고    scopus 로고
    • An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction
    • 25 Mohanakrishna, G., et al. An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction. Faraday Discuss. 183 (2015), 445–462.
    • (2015) Faraday Discuss. , vol.183 , pp. 445-462
    • Mohanakrishna, G.1
  • 26
    • 84874589923 scopus 로고    scopus 로고
    • Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes
    • e00420-412
    • 26 Summers, Z.M., et al. Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. MBio, 4, 2013 e00420-412.
    • (2013) MBio , vol.4
    • Summers, Z.M.1
  • 27
    • 77956937778 scopus 로고    scopus 로고
    • Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen
    • 27 Carbajosa, S., et al. Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen. Biosens. Bioelectron. 26 (2010), 877–880.
    • (2010) Biosens. Bioelectron. , vol.26 , pp. 877-880
    • Carbajosa, S.1
  • 28
    • 84871574438 scopus 로고    scopus 로고
    • 2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes
    • 2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes. Electrochem. Commun. 28 (2013), 27–30.
    • (2013) Electrochem. Commun. , vol.28 , pp. 27-30
    • Soussan, L.1
  • 29
    • 2642520659 scopus 로고    scopus 로고
    • Graphite electrodes as electron donors for anaerobic respiration
    • 29 Gregory, K.B., et al. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6 (2004), 596–604.
    • (2004) Environ. Microbiol. , vol.6 , pp. 596-604
    • Gregory, K.B.1
  • 30
    • 27744521813 scopus 로고    scopus 로고
    • Remediation and recovery of uranium from contaminated subsurface environments with electrodes
    • 30 Gregory, K.B., Lovley, D.R., Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39 (2005), 8943–8947.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 8943-8947
    • Gregory, K.B.1    Lovley, D.R.2
  • 31
    • 77956648802 scopus 로고    scopus 로고
    • Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities
    • 31 Mori, K., et al. Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. J. Biosci. Bioeng. 110 (2010), 426–430.
    • (2010) J. Biosci. Bioeng. , vol.110 , pp. 426-430
    • Mori, K.1
  • 32
    • 1542378939 scopus 로고    scopus 로고
    • Iron corrosion by novel anaerobic microorganisms
    • 32 Dinh, H.T., et al. Iron corrosion by novel anaerobic microorganisms. Nature 427 (2004), 829–832.
    • (2004) Nature , vol.427 , pp. 829-832
    • Dinh, H.T.1
  • 33
    • 84869496805 scopus 로고    scopus 로고
    • Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria
    • 33 Venzlaff, H., et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros. Sci. 66 (2013), 88–96.
    • (2013) Corros. Sci. , vol.66 , pp. 88-96
    • Venzlaff, H.1
  • 34
    • 84936930771 scopus 로고    scopus 로고
    • Electron extraction from an extracellular electrode by Desulfovibrio ferrophilus strain IS5 without using hydrogen as an electron carrier
    • 34 Deng, X., et al. Electron extraction from an extracellular electrode by Desulfovibrio ferrophilus strain IS5 without using hydrogen as an electron carrier. Electrochemistry 83 (2015), 529–531.
    • (2015) Electrochemistry , vol.83 , pp. 529-531
    • Deng, X.1
  • 35
    • 77749260571 scopus 로고    scopus 로고
    • Iron-corroding methanogen isolated from a crude-oil storage tank
    • 35 Uchiyama, T., et al. Iron-corroding methanogen isolated from a crude-oil storage tank. Appl. Environ. Microbiol. 76 (2010), 1783–1788.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 1783-1788
    • Uchiyama, T.1
  • 36
    • 0026928527 scopus 로고
    • Effects of selection and fate of substrates supplied to anaerobic bacteria involved in the corrosion of pipe-line steel
    • 36 Dowling, N.J.E., et al. Effects of selection and fate of substrates supplied to anaerobic bacteria involved in the corrosion of pipe-line steel. J. Ind. Microbiol. 10 (1992), 207–215.
    • (1992) J. Ind. Microbiol. , vol.10 , pp. 207-215
    • Dowling, N.J.E.1
  • 37
    • 84866148210 scopus 로고    scopus 로고
    • Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes
    • 37 Pisciotta, J.M., et al. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl. Environ. Microbiol. 78 (2012), 5212–5219.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 5212-5219
    • Pisciotta, J.M.1
  • 38
    • 84922894984 scopus 로고    scopus 로고
    • Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1
    • 38 Iino, T., et al. Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl. Environ. Microbiol. 81 (2015), 1839–1846.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 1839-1846
    • Iino, T.1
  • 39
    • 84943575185 scopus 로고    scopus 로고
    • Prolixibacter denitrificans sp. nov., an iron-corroding, facultatively aerobic, nitrate-reducing bacterium isolated from crude oil, and emended descriptions of the genus Prolixibacter and Prolixibacter bellariivorans
    • 39 Iino, T., et al. Prolixibacter denitrificans sp. nov., an iron-corroding, facultatively aerobic, nitrate-reducing bacterium isolated from crude oil, and emended descriptions of the genus Prolixibacter and Prolixibacter bellariivorans. Int. J. Syst. Evol. Microbiol. 65 (2015), 2865–2869.
    • (2015) Int. J. Syst. Evol. Microbiol. , vol.65 , pp. 2865-2869
    • Iino, T.1
  • 40
    • 84891624031 scopus 로고    scopus 로고
    • The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism
    • 40 Sieber, J.R., et al. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Environ. Microbiol. 16 (2014), 177–188.
    • (2014) Environ. Microbiol. , vol.16 , pp. 177-188
    • Sieber, J.R.1
  • 41
    • 84927511397 scopus 로고    scopus 로고
    • Syntrophic growth via quinone-mediated interspecies electron transfer
    • 41 Smith, J.A., et al. Syntrophic growth via quinone-mediated interspecies electron transfer. Front. Microbiol., 6, 2015, 121.
    • (2015) Front. Microbiol. , vol.6 , pp. 121
    • Smith, J.A.1
  • 42
    • 84869882273 scopus 로고    scopus 로고
    • Zero-valent sulphur is a key intermediate in marine methane oxidation
    • 42 Milucka, J., et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491 (2012), 541–546.
    • (2012) Nature , vol.491 , pp. 541-546
    • Milucka, J.1
  • 43
    • 0036281752 scopus 로고    scopus 로고
    • Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes
    • 43 Kaden, J., et al. Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Arch. Microbiol. 178 (2002), 53–58.
    • (2002) Arch. Microbiol. , vol.178 , pp. 53-58
    • Kaden, J.1
  • 44
    • 78649707496 scopus 로고    scopus 로고
    • Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
    • 44 Summers, Z.M., et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330 (2010), 1413–1415.
    • (2010) Science , vol.330 , pp. 1413-1415
    • Summers, Z.M.1
  • 45
    • 84890454863 scopus 로고    scopus 로고
    • A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
    • 45 Rotaru, A.-E., et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 7 (2014), 408–415.
    • (2014) Energy Environ. Sci. , vol.7 , pp. 408-415
    • Rotaru, A.-E.1
  • 46
    • 84929494201 scopus 로고    scopus 로고
    • Structural basis for metallic-like conductivity in microbial nanowires
    • 46 Malvankar, N.S., et al. Structural basis for metallic-like conductivity in microbial nanowires. MBio, 6, 2015, e00084.
    • (2015) MBio , vol.6 , pp. e00084
    • Malvankar, N.S.1
  • 47
    • 80052557316 scopus 로고    scopus 로고
    • Tunable metallic-like conductivity in microbial nanowire networks
    • 47 Malvankar, N.S., et al. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6 (2011), 573–579.
    • (2011) Nat. Nanotechnol. , vol.6 , pp. 573-579
    • Malvankar, N.S.1
  • 48
    • 84880037294 scopus 로고    scopus 로고
    • Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens
    • 48 Vargas, M., et al. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4 (2013), e00105–e00113.
    • (2013) MBio , vol.4 , pp. e00105-e00113
    • Vargas, M.1
  • 49
    • 84962241772 scopus 로고    scopus 로고
    • Thermally activated charge transport in microbial protein nanowires
    • 49 Lampa-Pastirk, S., et al. Thermally activated charge transport in microbial protein nanowires. Sci. Rep., 6, 2016, 23517.
    • (2016) Sci. Rep. , vol.6 , pp. 23517
    • Lampa-Pastirk, S.1
  • 50
    • 84939803262 scopus 로고    scopus 로고
    • Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations
    • 50 Feliciano, G.T., et al. Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations. Phys. Chem. Chem. Phys. 17 (2015), 22217–22226.
    • (2015) Phys. Chem. Chem. Phys. , vol.17 , pp. 22217-22226
    • Feliciano, G.T.1
  • 51
    • 84948844904 scopus 로고    scopus 로고
    • Thermally activated long range electron transport in living biofilms
    • 51 Yates, M.D., et al. Thermally activated long range electron transport in living biofilms. Phys. Chem. Chem. Phys. 17 (2015), 32564–32570.
    • (2015) Phys. Chem. Chem. Phys. , vol.17 , pp. 32564-32570
    • Yates, M.D.1
  • 52
    • 84866525384 scopus 로고    scopus 로고
    • Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven
    • 52 Snider, R.M., et al. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proc. Natl Acad. Sci. U.S.A. 109 (2012), 15467–15472.
    • (2012) Proc. Natl Acad. Sci. U.S.A. , vol.109 , pp. 15467-15472
    • Snider, R.M.1
  • 53
    • 84985896555 scopus 로고    scopus 로고
    • The relay network of Geobacter biofilms
    • 53 Ordóñez, M.V., et al. The relay network of Geobacter biofilms. Energy Environ. Sci. 9 (2016), 2677–2681.
    • (2016) Energy Environ. Sci. , vol.9 , pp. 2677-2681
    • Ordóñez, M.V.1
  • 54
    • 78650170320 scopus 로고    scopus 로고
    • Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens
    • 54 Strycharz, S.M., et al. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80 (2011), 142–150.
    • (2011) Bioelectrochemistry , vol.80 , pp. 142-150
    • Strycharz, S.M.1
  • 55
    • 84873861133 scopus 로고    scopus 로고
    • Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens
    • 55 Smith, J.A., et al. Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. Appl. Environ. Microbiol. 79 (2013), 901–907.
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 901-907
    • Smith, J.A.1
  • 56
    • 77953645311 scopus 로고    scopus 로고
    • Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens
    • 56 Leang, C., et al. Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl. Environ. Microbiol. 76 (2010), 4080–4084.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 4080-4084
    • Leang, C.1
  • 57
    • 84907956666 scopus 로고    scopus 로고
    • 2): an innovative method for biogas upgrading
    • 2): an innovative method for biogas upgrading. Bioresour. Technol. 173 (2014), 392–398.
    • (2014) Bioresour. Technol. , vol.173 , pp. 392-398
    • Xu, H.1
  • 58
    • 84945289920 scopus 로고    scopus 로고
    • Single cell activity reveals direct electron transfer in methanotrophic consortia
    • 58 McGlynn, S.E., et al. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526 (2015), 531–535.
    • (2015) Nature , vol.526 , pp. 531-535
    • McGlynn, S.E.1
  • 59
    • 84944755142 scopus 로고    scopus 로고
    • Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria
    • 59 Wegener, G., et al. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526 (2015), 587–590.
    • (2015) Nature , vol.526 , pp. 587-590
    • Wegener, G.1
  • 60
    • 84926029595 scopus 로고    scopus 로고
    • Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria
    • 60 Byrne, J.M., et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347 (2015), 1473–1476.
    • (2015) Science , vol.347 , pp. 1473-1476
    • Byrne, J.M.1
  • 61
    • 84924965830 scopus 로고    scopus 로고
    • Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange
    • 61 Liu, F., et al. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ. Microbiol. 17 (2015), 648–655.
    • (2015) Environ. Microbiol. , vol.17 , pp. 648-655
    • Liu, F.1
  • 62
    • 84870050017 scopus 로고    scopus 로고
    • Promoting direct interspecies electron transfer with activated carbon
    • 62 Liu, F., et al. Promoting direct interspecies electron transfer with activated carbon. Energy Environ. Sci. 5 (2012), 8982–8989.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 8982-8989
    • Liu, F.1
  • 63
    • 84862535140 scopus 로고    scopus 로고
    • Microbial interspecies electron transfer via electric currents through conductive minerals
    • 63 Kato, S., et al. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl Acad. Sci. U.S.A. 109 (2012), 10042–10046.
    • (2012) Proc. Natl Acad. Sci. U.S.A. , vol.109 , pp. 10042-10046
    • Kato, S.1
  • 64
    • 84883508876 scopus 로고    scopus 로고
    • Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community
    • 64 Jiang, S., et al. Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community. Environ. Sci. Technol. 47 (2013), 10078–10084.
    • (2013) Environ. Sci. Technol. , vol.47 , pp. 10078-10084
    • Jiang, S.1
  • 65
    • 84928978320 scopus 로고    scopus 로고
    • Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate
    • 65 Yamada, C., et al. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. J. Biosci. Bioeng. 119 (2015), 678–682.
    • (2015) J. Biosci. Bioeng. , vol.119 , pp. 678-682
    • Yamada, C.1
  • 66
    • 84928266457 scopus 로고    scopus 로고
    • Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments
    • 66 Li, H., et al. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environ. Microbiol. 17 (2015), 1533–1547.
    • (2015) Environ. Microbiol. , vol.17 , pp. 1533-1547
    • Li, H.1
  • 67
    • 84897609033 scopus 로고    scopus 로고
    • Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion
    • 67 De Vrieze, J., et al. Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. Water Res. 54 (2014), 211–221.
    • (2014) Water Res. , vol.54 , pp. 211-221
    • De Vrieze, J.1
  • 68
    • 84903692745 scopus 로고    scopus 로고
    • Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation
    • 68 Cruz Viggi, C., et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ. Sci. Technol. 48 (2014), 7536–7543.
    • (2014) Environ. Sci. Technol. , vol.48 , pp. 7536-7543
    • Cruz Viggi, C.1
  • 69
    • 84946762063 scopus 로고    scopus 로고
    • 2 to organic products
    • 2 to organic products. Sci. Rep., 5, 2015, 16168.
    • (2015) Sci. Rep. , vol.5 , pp. 16168
    • Tremblay, P.-L.1
  • 70
    • 84927517075 scopus 로고    scopus 로고
    • Microbial electroreduction: screening for new cathodic biocatalysts
    • 70 de Campos Rodrigues, T., Rosenbaum, M.A., Microbial electroreduction: screening for new cathodic biocatalysts. ChemElectroChem 1 (2014), 1916–1922.
    • (2014) ChemElectroChem , vol.1 , pp. 1916-1922
    • de Campos Rodrigues, T.1    Rosenbaum, M.A.2
  • 71
    • 84927559065 scopus 로고    scopus 로고
    • Electrifying microbes for the production of chemicals
    • 71 Tremblay, P.-L., Zhang, T., Electrifying microbes for the production of chemicals. Front. Microbiol., 6, 2015, 201.
    • (2015) Front. Microbiol. , vol.6 , pp. 201
    • Tremblay, P.-L.1    Zhang, T.2
  • 72
    • 84973164089 scopus 로고    scopus 로고
    • 2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine
    • 2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine. J. Mater. Chem. A 4 (2016), 8395–8401.
    • (2016) J. Mater. Chem. A , vol.4 , pp. 8395-8401
    • Chen, L.1
  • 73
    • 84954305774 scopus 로고    scopus 로고
    • Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide
    • 73 Jourdin, L., et al. Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide. ChemElectroChem 3 (2016), 581–591.
    • (2016) ChemElectroChem , vol.3 , pp. 581-591
    • Jourdin, L.1
  • 74
    • 84872258879 scopus 로고    scopus 로고
    • Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell
    • 74 Villano, M., et al. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresour. Technol. 130 (2013), 366–371.
    • (2013) Bioresour. Technol. , vol.130 , pp. 366-371
    • Villano, M.1
  • 75
    • 84901612043 scopus 로고    scopus 로고
    • Utilization of surplus electricity from wind power for dynamic biogas upgrading: Northern Germany case study
    • 75 Jürgensen, L., et al. Utilization of surplus electricity from wind power for dynamic biogas upgrading: Northern Germany case study. Biomass Bioenerg. 66 (2014), 126–132.
    • (2014) Biomass Bioenerg. , vol.66 , pp. 126-132
    • Jürgensen, L.1
  • 76
    • 84931262255 scopus 로고    scopus 로고
    • Simplifying microbial electrosynthesis reactor design
    • 76 Giddings, C.G.S., et al. Simplifying microbial electrosynthesis reactor design. Front. Microbiol., 6, 2015, 468.
    • (2015) Front. Microbiol. , vol.6 , pp. 468
    • Giddings, C.G.S.1
  • 77
    • 84905648721 scopus 로고    scopus 로고
    • Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions
    • 77 Luo, X., et al. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions. Environ. Sci. Technol. 48 (2014), 8911–8918.
    • (2014) Environ. Sci. Technol. , vol.48 , pp. 8911-8918
    • Luo, X.1
  • 78
    • 84902596879 scopus 로고    scopus 로고
    • Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams
    • 78 Andersen, S.J., et al. Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. Environ. Sci. Technol. 48 (2014), 7135–7142.
    • (2014) Environ. Sci. Technol. , vol.48 , pp. 7135-7142
    • Andersen, S.J.1
  • 79
    • 84969195348 scopus 로고    scopus 로고
    • 2 through microbial electrosynthesis
    • 2 through microbial electrosynthesis. Environ. Sci. Technol. Lett. 2 (2015), 325–328.
    • (2015) Environ. Sci. Technol. Lett. , vol.2 , pp. 325-328
    • Gildemyn, S.1
  • 80
    • 84926645424 scopus 로고    scopus 로고
    • In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis
    • 80 Xu, J., et al. In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis. Chem. Commun. 51 (2015), 6847–6850.
    • (2015) Chem. Commun. , vol.51 , pp. 6847-6850
    • Xu, J.1
  • 81
    • 84941662879 scopus 로고    scopus 로고
    • Hybrid bioinorganic approach to solar-to-chemical conversion
    • 81 Nichols, E.M., et al. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc. Natl Acad. Sci. U.S.A. 112 (2015), 11461–11466.
    • (2015) Proc. Natl Acad. Sci. U.S.A. , vol.112 , pp. 11461-11466
    • Nichols, E.M.1
  • 82
    • 84929190956 scopus 로고    scopus 로고
    • Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals
    • 82 Liu, C., et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15 (2015), 3634–3639.
    • (2015) Nano Lett. , vol.15 , pp. 3634-3639
    • Liu, C.1
  • 83
    • 84923676034 scopus 로고    scopus 로고
    • Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system
    • 83 Torella, J.P., et al. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proc. Natl Acad. Sci. U.S.A. 112 (2015), 2337–2342.
    • (2015) Proc. Natl Acad. Sci. U.S.A. , vol.112 , pp. 2337-2342
    • Torella, J.P.1
  • 84
    • 84974678646 scopus 로고    scopus 로고
    • 2 reduction efficiencies exceeding photosynthesis
    • 2 reduction efficiencies exceeding photosynthesis. Science 352 (2016), 1210–1213.
    • (2016) Science , vol.352 , pp. 1210-1213
    • Liu, C.1
  • 85
    • 84946917743 scopus 로고    scopus 로고
    • More efficient together
    • 85 Zhang, T., More efficient together. Science 350 (2015), 738–739.
    • (2015) Science , vol.350 , pp. 738-739
    • Zhang, T.1
  • 86
    • 84964314828 scopus 로고    scopus 로고
    • Towards synthetic biological approaches to resource utilization on space missions
    • 86 Menezes, A.A., et al. Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface, 12, 2015, 20140715.
    • (2015) J. R. Soc. Interface , vol.12 , pp. 20140715
    • Menezes, A.A.1
  • 87
    • 84945453220 scopus 로고    scopus 로고
    • Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode
    • 87 Bajracharya, S., et al. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour. Technol. 195 (2015), 14–24.
    • (2015) Bioresour. Technol. , vol.195 , pp. 14-24
    • Bajracharya, S.1
  • 88
    • 84994406842 scopus 로고    scopus 로고
    • 2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis
    • 2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis. Bioelectrochemistry 113 (2017), 26–34.
    • (2017) Bioelectrochemistry , vol.113 , pp. 26-34
    • Bajracharya, S.1
  • 89
    • 84938483224 scopus 로고    scopus 로고
    • Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell
    • 89 Zeppilli, M., et al. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell. Environ. Sci. Pollut. Res. Int. 22 (2015), 7349–7360.
    • (2015) Environ. Sci. Pollut. Res. Int. , vol.22 , pp. 7349-7360
    • Zeppilli, M.1
  • 90
    • 84908021230 scopus 로고    scopus 로고
    • Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome
    • 90 LaBelle, E.V., et al. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome. PLoS One, 9, 2014, e109935.
    • (2014) PLoS One , vol.9 , pp. e109935
    • LaBelle, E.V.1
  • 91
    • 84908433337 scopus 로고    scopus 로고
    • Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii
    • e01636-1614
    • 91 Ueki, T., et al. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. MBio, 5, 2014 e01636-1614.
    • (2014) MBio , vol.5
    • Ueki, T.1
  • 92
    • 84947251258 scopus 로고    scopus 로고
    • High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide
    • 92 Jourdin, L., et al. High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environ. Sci. Technol. 49 (2015), 13566–13574.
    • (2015) Environ. Sci. Technol. , vol.49 , pp. 13566-13574
    • Jourdin, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.