메뉴 건너뛰기




Volumn 69, Issue , 2017, Pages 52-60

Adjusted weight voting algorithm for random forests in handling missing values

Author keywords

Imputation approaches; Missing values; Random forests; Surrogate decisions; Weighted voting

Indexed keywords

CLASSIFICATION (OF INFORMATION);

EID: 85019456114     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2017.04.005     Document Type: Article
Times cited : (89)

References (39)
  • 2
    • 13444291932 scopus 로고    scopus 로고
    • A review and comparison of classification algorithms for medical decision making
    • Harper, P.R., A review and comparison of classification algorithms for medical decision making. Health Policy 71 (2005), 315–331.
    • (2005) Health Policy , vol.71 , pp. 315-331
    • Harper, P.R.1
  • 3
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani, F., Machine learning in automated text categorization. ACM Comput. Surv. 34 (2002), 1–47.
    • (2002) ACM Comput. Surv. , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 8
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte, R., De Andres, S.A., Gene selection and classification of microarray data using random forest. BMC Bioinf., 7, 2006, 1.
    • (2006) BMC Bioinf. , vol.7 , pp. 1
    • Díaz-Uriarte, R.1    De Andres, S.A.2
  • 9
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests: A survey and results of new tests
    • Verikas, A., Gelzinis, A., Bacauskiene, M., Mining data with random forests: A survey and results of new tests. Pattern Recognit. 44 (2011), 330–349.
    • (2011) Pattern Recognit. , vol.44 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 10
    • 84861730860 scopus 로고    scopus 로고
    • Random forests for genomic data analysis
    • Chen, X., Ishwaran, H., Random forests for genomic data analysis. Genomics 99 (2012), 323–329.
    • (2012) Genomics , vol.99 , pp. 323-329
    • Chen, X.1    Ishwaran, H.2
  • 11
    • 84933574325 scopus 로고    scopus 로고
    • Decision forest: twenty years of research
    • Rokach, L., Decision forest: twenty years of research. Inf. Fusion 27 (2016), 111–125.
    • (2016) Inf. Fusion , vol.27 , pp. 111-125
    • Rokach, L.1
  • 12
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Kluwer Academic Publishers
    • Breiman, L., Random forests. Machine Learning, 2001, Kluwer Academic Publishers, 5–32.
    • (2001) Machine Learning , pp. 5-32
    • Breiman, L.1
  • 13
    • 84891629894 scopus 로고    scopus 로고
    • A new variable importance measure for random forests with missing data
    • Hapfelmeier, A., Hothorn, T., Ulm, K., Strobl, C., A new variable importance measure for random forests with missing data. Stat. Comput. 24 (2014), 21–34.
    • (2014) Stat. Comput. , vol.24 , pp. 21-34
    • Hapfelmeier, A.1    Hothorn, T.2    Ulm, K.3    Strobl, C.4
  • 15
    • 84860701629 scopus 로고    scopus 로고
    • Analysis of a random forests model
    • Biau, G., Analysis of a random forests model. J. Mach. Learn. Res. 13 (2012), 1063–1095.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 1063-1095
    • Biau, G.1
  • 16
    • 70349325846 scopus 로고    scopus 로고
    • Influence of hyperparameters on random forest accuracy
    • Springer
    • Bernard, S., Heutte, L., Adam, S., Influence of hyperparameters on random forest accuracy. Multiple Classifier Systems, 2009, Springer, 171–180.
    • (2009) Multiple Classifier Systems , pp. 171-180
    • Bernard, S.1    Heutte, L.2    Adam, S.3
  • 18
    • 82855178868 scopus 로고    scopus 로고
    • A weight-adjusted voting algorithm for ensembles of classifiers
    • Kim, H., Kim, H., Moon, H., Ahn, H., A weight-adjusted voting algorithm for ensembles of classifiers. J. Korean Stat. Soc. 40 (2011), 437–449.
    • (2011) J. Korean Stat. Soc. , vol.40 , pp. 437-449
    • Kim, H.1    Kim, H.2    Moon, H.3    Ahn, H.4
  • 19
    • 79951794668 scopus 로고    scopus 로고
    • Trees weighting random forest method for classifying high-dimensional noisy data, e-Business Engineering (ICEBE)
    • Li, H.B., Wang, W., Ding, H.W., Dong, J., Trees weighting random forest method for classifying high-dimensional noisy data, e-Business Engineering (ICEBE). 2010 IEEE 7th International Conference on, IEEE, 2010, 160–163.
    • (2010) 2010 IEEE 7th International Conference on, IEEE , pp. 160-163
    • Li, H.B.1    Wang, W.2    Ding, H.W.3    Dong, J.4
  • 20
    • 84855177476 scopus 로고    scopus 로고
    • MissForest—non-parametric missing value imputation for mixed-type data
    • Stekhoven, D.J., Bühlmann, P., MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28 (2012), 112–118.
    • (2012) Bioinformatics , vol.28 , pp. 112-118
    • Stekhoven, D.J.1    Bühlmann, P.2
  • 21
    • 84863601626 scopus 로고    scopus 로고
    • A review of the reporting and handling of missing data in cohort studies with repeated assessment of exposure measures
    • Karahalios, A., Baglietto, L., Carlin, J.B., English, D.R., Simpson, J.A., A review of the reporting and handling of missing data in cohort studies with repeated assessment of exposure measures. BMC Med. Res. Methodol., 12, 2012, 96.
    • (2012) BMC Med. Res. Methodol. , vol.12 , pp. 96
    • Karahalios, A.1    Baglietto, L.2    Carlin, J.B.3    English, D.R.4    Simpson, J.A.5
  • 22
    • 71549166314 scopus 로고    scopus 로고
    • An introduction to modern missing data analyses
    • Baraldi, A.N., Enders, C.K., An introduction to modern missing data analyses. J. School Psychol. 48 (2010), 5–37.
    • (2010) J. School Psychol. , vol.48 , pp. 5-37
    • Baraldi, A.N.1    Enders, C.K.2
  • 24
    • 84886567160 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • available online
    • Lichman, M., UCI Machine Learning Repository. available online http://archive.ics.uci.edu/ml, 2013.
    • (2013)
    • Lichman, M.1
  • 25
    • 84941172646 scopus 로고    scopus 로고
    • Automatic classification of respiratory patterns involving missing data imputation techniques
    • Hernández-Pereira, E.M., Álvarez-Estévez, D., Moret-Bonillo, V., Automatic classification of respiratory patterns involving missing data imputation techniques. Biosyst. Eng. 138 (2015), 65–76.
    • (2015) Biosyst. Eng. , vol.138 , pp. 65-76
    • Hernández-Pereira, E.M.1    Álvarez-Estévez, D.2    Moret-Bonillo, V.3
  • 28
    • 85019464826 scopus 로고    scopus 로고
    • A dynamic ensemble approach to robust classification in the presence of missing data
    • Conroy, B., Eshelman, L., Potes, C., Xu-Wilson, M., A dynamic ensemble approach to robust classification in the presence of missing data. Mach. Learn., 2015, 1–21.
    • (2015) Mach. Learn. , pp. 1-21
    • Conroy, B.1    Eshelman, L.2    Potes, C.3    Xu-Wilson, M.4
  • 29
    • 84858866778 scopus 로고    scopus 로고
    • A classifier ensemble approach for the missing feature problem
    • Nanni, L., Lumini, A., Brahnam, S., A classifier ensemble approach for the missing feature problem. Artif. Intell. Med. 55 (2012), 37–50.
    • (2012) Artif. Intell. Med. , vol.55 , pp. 37-50
    • Nanni, L.1    Lumini, A.2    Brahnam, S.3
  • 30
    • 84895894249 scopus 로고    scopus 로고
    • Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study
    • Shah, A.D., Bartlett, J.W., Carpenter, J., Nicholas, O., Hemingway, H., Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study. Am. J. Epidemiol., 2014, 10.1093/aje/kwt312.
    • (2014) Am. J. Epidemiol.
    • Shah, A.D.1    Bartlett, J.W.2    Carpenter, J.3    Nicholas, O.4    Hemingway, H.5
  • 31
    • 76749163647 scopus 로고    scopus 로고
    • Selection–fusion approach for classification of datasets with missing values
    • Ghannad-Rezaie, M., Soltanian-Zadeh, H., Ying, H., Dong, M., Selection–fusion approach for classification of datasets with missing values. Pattern Recognit. 43 (2010), 2340–2350.
    • (2010) Pattern Recognit. , vol.43 , pp. 2340-2350
    • Ghannad-Rezaie, M.1    Soltanian-Zadeh, H.2    Ying, H.3    Dong, M.4
  • 32
    • 35048859747 scopus 로고    scopus 로고
    • Combining one-class classifiers to classify missing data
    • Springer
    • Juszczak, P., Duin, R.P., Combining one-class classifiers to classify missing data. Multiple Classifier Systems, 2004, Springer, 92–101.
    • (2004) Multiple Classifier Systems , pp. 92-101
    • Juszczak, P.1    Duin, R.P.2
  • 33
    • 84927722807 scopus 로고    scopus 로고
    • Tree-based prediction on incomplete data using imputation or surrogate decisions
    • Valdiviezo, H.C., Van Aelst, S., Tree-based prediction on incomplete data using imputation or surrogate decisions. Inf. Sci. 311 (2015), 163–181.
    • (2015) Inf. Sci. , vol.311 , pp. 163-181
    • Valdiviezo, H.C.1    Van Aelst, S.2
  • 35
    • 84857652587 scopus 로고    scopus 로고
    • Recursive partitioning on incomplete data using surrogate decisions and multiple imputation
    • Hapfelmeier, A., Hothorn, T., Ulm, K., Recursive partitioning on incomplete data using surrogate decisions and multiple imputation. Comput. Stat. Data Anal. 56 (2012), 1552–1565.
    • (2012) Comput. Stat. Data Anal. , vol.56 , pp. 1552-1565
    • Hapfelmeier, A.1    Hothorn, T.2    Ulm, K.3
  • 36
    • 67651230252 scopus 로고    scopus 로고
    • An empirical comparison of techniques for handling incomplete data using decision trees
    • Twala, B., An empirical comparison of techniques for handling incomplete data using decision trees. Appl. Artif. Intell. 23 (2009), 373–405.
    • (2009) Appl. Artif. Intell. , vol.23 , pp. 373-405
    • Twala, B.1
  • 37
    • 84857643916 scopus 로고    scopus 로고
    • Random forests with missing values in the covariates
    • Rieger, A., Hothorn, T., Strobl, C., Random forests with missing values in the covariates. http://epub.ub.uni-muenchen.de/11481, 2010.
    • (2010)
    • Rieger, A.1    Hothorn, T.2    Strobl, C.3
  • 38
    • 0041382385 scopus 로고    scopus 로고
    • Random forests
    • available online
    • Breiman, L., Cutler, A., Random forests. available online http://www.stat.berkeley.edu/∼breiman/RandomForests/, 2008.
    • (2008)
    • Breiman, L.1    Cutler, A.2
  • 39
    • 0242643743 scopus 로고    scopus 로고
    • A Bayesian missing value estimation method for gene expression profile data
    • Oba, S., Sato, M.A., Takemasa, I., Monden, M., Matsubara, K., Ishii, S., A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19 (2003), 2088–2096.
    • (2003) Bioinformatics , vol.19 , pp. 2088-2096
    • Oba, S.1    Sato, M.A.2    Takemasa, I.3    Monden, M.4    Matsubara, K.5    Ishii, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.