-
1
-
-
33748849648
-
Machine learning in bioinformatics
-
Larrañaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J.A., Armañanzas, R., Santafé, G., Pérez, A., Machine learning in bioinformatics. Briefings Bioinf. 7 (2006), 86–112.
-
(2006)
Briefings Bioinf.
, vol.7
, pp. 86-112
-
-
Larrañaga, P.1
Calvo, B.2
Santana, R.3
Bielza, C.4
Galdiano, J.5
Inza, I.6
Lozano, J.A.7
Armañanzas, R.8
Santafé, G.9
Pérez, A.10
-
2
-
-
13444291932
-
A review and comparison of classification algorithms for medical decision making
-
Harper, P.R., A review and comparison of classification algorithms for medical decision making. Health Policy 71 (2005), 315–331.
-
(2005)
Health Policy
, vol.71
, pp. 315-331
-
-
Harper, P.R.1
-
3
-
-
0002442796
-
Machine learning in automated text categorization
-
Sebastiani, F., Machine learning in automated text categorization. ACM Comput. Surv. 34 (2002), 1–47.
-
(2002)
ACM Comput. Surv.
, vol.34
, pp. 1-47
-
-
Sebastiani, F.1
-
4
-
-
11144226973
-
Recent advances in visual and infrared face recognition—a review
-
Kong, S.G., Heo, J., Abidi, B.R., Paik, J., Abidi, M.A., Recent advances in visual and infrared face recognition—a review. Comput. Vision Image Understanding 97 (2005), 103–135.
-
(2005)
Comput. Vision Image Understanding
, vol.97
, pp. 103-135
-
-
Kong, S.G.1
Heo, J.2
Abidi, B.R.3
Paik, J.4
Abidi, M.A.5
-
5
-
-
84859962561
-
A computational model for heart failure stratification
-
Fu, X., Ren, Y., Yang, G., Pan, Q., Gong, S., Li, L., Yan, J., Ning, G., A computational model for heart failure stratification. Computing in Cardiology, 2011, IEEE, 2011, 385–388.
-
(2011)
Computing in Cardiology, 2011, IEEE
, pp. 385-388
-
-
Fu, X.1
Ren, Y.2
Yang, G.3
Pan, Q.4
Gong, S.5
Li, L.6
Yan, J.7
Ning, G.8
-
6
-
-
84867599593
-
Probabilistic fuzzy prediction of mortality in intensive care units
-
Fialho, A.S., Kaymak, U., Almeida, R.J., Cismondi, F., Vieira, S.M., Reti, S.R., Sousa, J.M., Finkelstein, S.N., Probabilistic fuzzy prediction of mortality in intensive care units. Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on, IEEE, 2012, 1–8.
-
(2012)
Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on, IEEE
, pp. 1-8
-
-
Fialho, A.S.1
Kaymak, U.2
Almeida, R.J.3
Cismondi, F.4
Vieira, S.M.5
Reti, S.R.6
Sousa, J.M.7
Finkelstein, S.N.8
-
7
-
-
38449114584
-
Random forests for classification in ecology
-
Cutler, D.R., Edwards, T.C. Jr, Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J., Random forests for classification in ecology. Ecology 88 (2007), 2783–2792.
-
(2007)
Ecology
, vol.88
, pp. 2783-2792
-
-
Cutler, D.R.1
Edwards, T.C.2
Beard, K.H.3
Cutler, A.4
Hess, K.T.5
Gibson, J.6
Lawler, J.J.7
-
8
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
Díaz-Uriarte, R., De Andres, S.A., Gene selection and classification of microarray data using random forest. BMC Bioinf., 7, 2006, 1.
-
(2006)
BMC Bioinf.
, vol.7
, pp. 1
-
-
Díaz-Uriarte, R.1
De Andres, S.A.2
-
9
-
-
77958064179
-
Mining data with random forests: A survey and results of new tests
-
Verikas, A., Gelzinis, A., Bacauskiene, M., Mining data with random forests: A survey and results of new tests. Pattern Recognit. 44 (2011), 330–349.
-
(2011)
Pattern Recognit.
, vol.44
, pp. 330-349
-
-
Verikas, A.1
Gelzinis, A.2
Bacauskiene, M.3
-
10
-
-
84861730860
-
Random forests for genomic data analysis
-
Chen, X., Ishwaran, H., Random forests for genomic data analysis. Genomics 99 (2012), 323–329.
-
(2012)
Genomics
, vol.99
, pp. 323-329
-
-
Chen, X.1
Ishwaran, H.2
-
11
-
-
84933574325
-
Decision forest: twenty years of research
-
Rokach, L., Decision forest: twenty years of research. Inf. Fusion 27 (2016), 111–125.
-
(2016)
Inf. Fusion
, vol.27
, pp. 111-125
-
-
Rokach, L.1
-
12
-
-
0035478854
-
Random forests
-
Kluwer Academic Publishers
-
Breiman, L., Random forests. Machine Learning, 2001, Kluwer Academic Publishers, 5–32.
-
(2001)
Machine Learning
, pp. 5-32
-
-
Breiman, L.1
-
13
-
-
84891629894
-
A new variable importance measure for random forests with missing data
-
Hapfelmeier, A., Hothorn, T., Ulm, K., Strobl, C., A new variable importance measure for random forests with missing data. Stat. Comput. 24 (2014), 21–34.
-
(2014)
Stat. Comput.
, vol.24
, pp. 21-34
-
-
Hapfelmeier, A.1
Hothorn, T.2
Ulm, K.3
Strobl, C.4
-
14
-
-
0344795635
-
-
Wadsworth, Systat Statistics ® Spss Inc. United States of America
-
Breiman, L., Friedman, J.H., Olshen, R., Stone, C.J., Classification and Regression Trees, vol. 81, 1984, Wadsworth, Systat Statistics ® Spss Inc. United States of America, 17–23.
-
(1984)
Classification and Regression Trees
, vol.81
, pp. 17-23
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.3
Stone, C.J.4
-
15
-
-
84860701629
-
Analysis of a random forests model
-
Biau, G., Analysis of a random forests model. J. Mach. Learn. Res. 13 (2012), 1063–1095.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 1063-1095
-
-
Biau, G.1
-
16
-
-
70349325846
-
Influence of hyperparameters on random forest accuracy
-
Springer
-
Bernard, S., Heutte, L., Adam, S., Influence of hyperparameters on random forest accuracy. Multiple Classifier Systems, 2009, Springer, 171–180.
-
(2009)
Multiple Classifier Systems
, pp. 171-180
-
-
Bernard, S.1
Heutte, L.2
Adam, S.3
-
18
-
-
82855178868
-
A weight-adjusted voting algorithm for ensembles of classifiers
-
Kim, H., Kim, H., Moon, H., Ahn, H., A weight-adjusted voting algorithm for ensembles of classifiers. J. Korean Stat. Soc. 40 (2011), 437–449.
-
(2011)
J. Korean Stat. Soc.
, vol.40
, pp. 437-449
-
-
Kim, H.1
Kim, H.2
Moon, H.3
Ahn, H.4
-
19
-
-
79951794668
-
Trees weighting random forest method for classifying high-dimensional noisy data, e-Business Engineering (ICEBE)
-
Li, H.B., Wang, W., Ding, H.W., Dong, J., Trees weighting random forest method for classifying high-dimensional noisy data, e-Business Engineering (ICEBE). 2010 IEEE 7th International Conference on, IEEE, 2010, 160–163.
-
(2010)
2010 IEEE 7th International Conference on, IEEE
, pp. 160-163
-
-
Li, H.B.1
Wang, W.2
Ding, H.W.3
Dong, J.4
-
20
-
-
84855177476
-
MissForest—non-parametric missing value imputation for mixed-type data
-
Stekhoven, D.J., Bühlmann, P., MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28 (2012), 112–118.
-
(2012)
Bioinformatics
, vol.28
, pp. 112-118
-
-
Stekhoven, D.J.1
Bühlmann, P.2
-
21
-
-
84863601626
-
A review of the reporting and handling of missing data in cohort studies with repeated assessment of exposure measures
-
Karahalios, A., Baglietto, L., Carlin, J.B., English, D.R., Simpson, J.A., A review of the reporting and handling of missing data in cohort studies with repeated assessment of exposure measures. BMC Med. Res. Methodol., 12, 2012, 96.
-
(2012)
BMC Med. Res. Methodol.
, vol.12
, pp. 96
-
-
Karahalios, A.1
Baglietto, L.2
Carlin, J.B.3
English, D.R.4
Simpson, J.A.5
-
22
-
-
71549166314
-
An introduction to modern missing data analyses
-
Baraldi, A.N., Enders, C.K., An introduction to modern missing data analyses. J. School Psychol. 48 (2010), 5–37.
-
(2010)
J. School Psychol.
, vol.48
, pp. 5-37
-
-
Baraldi, A.N.1
Enders, C.K.2
-
23
-
-
79952229665
-
Pattern classification with missing data: a review
-
García-Laencina, P.J., Sancho-Gómez, J.-L., Figueiras-Vidal, A.R., Pattern classification with missing data: a review. Neural Comput. Appl. 19 (2010), 263–282.
-
(2010)
Neural Comput. Appl.
, vol.19
, pp. 263-282
-
-
García-Laencina, P.J.1
Sancho-Gómez, J.-L.2
Figueiras-Vidal, A.R.3
-
24
-
-
84886567160
-
UCI Machine Learning Repository
-
available online
-
Lichman, M., UCI Machine Learning Repository. available online http://archive.ics.uci.edu/ml, 2013.
-
(2013)
-
-
Lichman, M.1
-
25
-
-
84941172646
-
Automatic classification of respiratory patterns involving missing data imputation techniques
-
Hernández-Pereira, E.M., Álvarez-Estévez, D., Moret-Bonillo, V., Automatic classification of respiratory patterns involving missing data imputation techniques. Biosyst. Eng. 138 (2015), 65–76.
-
(2015)
Biosyst. Eng.
, vol.138
, pp. 65-76
-
-
Hernández-Pereira, E.M.1
Álvarez-Estévez, D.2
Moret-Bonillo, V.3
-
26
-
-
84891294658
-
Overall survival prediction for women breast cancer using ensemble methods and incomplete clinical data
-
Springer
-
Abreu, P.H., Amaro, H., Silva, D.C., Machado, P., Abreu, M.H., Afonso, N., Dourado, A., Overall survival prediction for women breast cancer using ensemble methods and incomplete clinical data. XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013, 2014, Springer, 1366–1369.
-
(2014)
XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013
, pp. 1366-1369
-
-
Abreu, P.H.1
Amaro, H.2
Silva, D.C.3
Machado, P.4
Abreu, M.H.5
Afonso, N.6
Dourado, A.7
-
27
-
-
78049341530
-
Learn++. MF: a random subspace approach for the missing feature problem
-
Polikar, R., DePasquale, J., Mohammed, H.S., Brown, G., Kuncheva, L.I., Learn++. MF: a random subspace approach for the missing feature problem. Pattern Recognit. 43 (2010), 3817–3832.
-
(2010)
Pattern Recognit.
, vol.43
, pp. 3817-3832
-
-
Polikar, R.1
DePasquale, J.2
Mohammed, H.S.3
Brown, G.4
Kuncheva, L.I.5
-
28
-
-
85019464826
-
A dynamic ensemble approach to robust classification in the presence of missing data
-
Conroy, B., Eshelman, L., Potes, C., Xu-Wilson, M., A dynamic ensemble approach to robust classification in the presence of missing data. Mach. Learn., 2015, 1–21.
-
(2015)
Mach. Learn.
, pp. 1-21
-
-
Conroy, B.1
Eshelman, L.2
Potes, C.3
Xu-Wilson, M.4
-
29
-
-
84858866778
-
A classifier ensemble approach for the missing feature problem
-
Nanni, L., Lumini, A., Brahnam, S., A classifier ensemble approach for the missing feature problem. Artif. Intell. Med. 55 (2012), 37–50.
-
(2012)
Artif. Intell. Med.
, vol.55
, pp. 37-50
-
-
Nanni, L.1
Lumini, A.2
Brahnam, S.3
-
30
-
-
84895894249
-
Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study
-
Shah, A.D., Bartlett, J.W., Carpenter, J., Nicholas, O., Hemingway, H., Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study. Am. J. Epidemiol., 2014, 10.1093/aje/kwt312.
-
(2014)
Am. J. Epidemiol.
-
-
Shah, A.D.1
Bartlett, J.W.2
Carpenter, J.3
Nicholas, O.4
Hemingway, H.5
-
31
-
-
76749163647
-
Selection–fusion approach for classification of datasets with missing values
-
Ghannad-Rezaie, M., Soltanian-Zadeh, H., Ying, H., Dong, M., Selection–fusion approach for classification of datasets with missing values. Pattern Recognit. 43 (2010), 2340–2350.
-
(2010)
Pattern Recognit.
, vol.43
, pp. 2340-2350
-
-
Ghannad-Rezaie, M.1
Soltanian-Zadeh, H.2
Ying, H.3
Dong, M.4
-
32
-
-
35048859747
-
Combining one-class classifiers to classify missing data
-
Springer
-
Juszczak, P., Duin, R.P., Combining one-class classifiers to classify missing data. Multiple Classifier Systems, 2004, Springer, 92–101.
-
(2004)
Multiple Classifier Systems
, pp. 92-101
-
-
Juszczak, P.1
Duin, R.P.2
-
33
-
-
84927722807
-
Tree-based prediction on incomplete data using imputation or surrogate decisions
-
Valdiviezo, H.C., Van Aelst, S., Tree-based prediction on incomplete data using imputation or surrogate decisions. Inf. Sci. 311 (2015), 163–181.
-
(2015)
Inf. Sci.
, vol.311
, pp. 163-181
-
-
Valdiviezo, H.C.1
Van Aelst, S.2
-
35
-
-
84857652587
-
Recursive partitioning on incomplete data using surrogate decisions and multiple imputation
-
Hapfelmeier, A., Hothorn, T., Ulm, K., Recursive partitioning on incomplete data using surrogate decisions and multiple imputation. Comput. Stat. Data Anal. 56 (2012), 1552–1565.
-
(2012)
Comput. Stat. Data Anal.
, vol.56
, pp. 1552-1565
-
-
Hapfelmeier, A.1
Hothorn, T.2
Ulm, K.3
-
36
-
-
67651230252
-
An empirical comparison of techniques for handling incomplete data using decision trees
-
Twala, B., An empirical comparison of techniques for handling incomplete data using decision trees. Appl. Artif. Intell. 23 (2009), 373–405.
-
(2009)
Appl. Artif. Intell.
, vol.23
, pp. 373-405
-
-
Twala, B.1
-
37
-
-
84857643916
-
Random forests with missing values in the covariates
-
Rieger, A., Hothorn, T., Strobl, C., Random forests with missing values in the covariates. http://epub.ub.uni-muenchen.de/11481, 2010.
-
(2010)
-
-
Rieger, A.1
Hothorn, T.2
Strobl, C.3
-
38
-
-
0041382385
-
Random forests
-
available online
-
Breiman, L., Cutler, A., Random forests. available online http://www.stat.berkeley.edu/∼breiman/RandomForests/, 2008.
-
(2008)
-
-
Breiman, L.1
Cutler, A.2
-
39
-
-
0242643743
-
A Bayesian missing value estimation method for gene expression profile data
-
Oba, S., Sato, M.A., Takemasa, I., Monden, M., Matsubara, K., Ishii, S., A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19 (2003), 2088–2096.
-
(2003)
Bioinformatics
, vol.19
, pp. 2088-2096
-
-
Oba, S.1
Sato, M.A.2
Takemasa, I.3
Monden, M.4
Matsubara, K.5
Ishii, S.6
|