메뉴 건너뛰기




Volumn 27, Issue , 2016, Pages 111-125

Decision forest: Twenty years of research

Author keywords

Classification tree; Decision forest; Decision tree; Random forest

Indexed keywords

LEARNING ALGORITHMS;

EID: 84933574325     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2015.06.005     Document Type: Article
Times cited : (322)

References (119)
  • 1
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15 1 2014 3133 3181
    • (2014) J. Mach. Learn. Res. , vol.15 , Issue.1 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 4
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • M. Woźniak, M. Graña, and E. Corchado A survey of multiple classifier systems as hybrid systems Inform. Fusion 16 2014 3 17
    • (2014) Inform. Fusion , vol.16 , pp. 3-17
    • Woźniak, M.1    Graña, M.2    Corchado, E.3
  • 5
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests: A survey and results of new tests
    • A. Verikas, A. Gelzinis, and M. Bacauskiene Mining data with random forests: a survey and results of new tests Pattern Recogn. 44 2011 330 349
    • (2011) Pattern Recogn. , vol.44 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 6
    • 84887978175 scopus 로고    scopus 로고
    • Random forest classifiers: A survey and future research directions
    • V.Y. Kulkarni, and P.K. Sinha Random forest classifiers: a survey and future research directions Int. J. Adv. Comput. 36 1 2013 1144 1153
    • (2013) Int. J. Adv. Comput. , vol.36 , Issue.1 , pp. 1144-1153
    • Kulkarni, V.Y.1    Sinha, P.K.2
  • 8
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R.A. Fisher The use of multiple measurements in taxonomic problems Ann. Eugenic. 7 2 1936 179 188 10.1111/j.1469-1809.1936.tb02137.x
    • (1936) Ann. Eugenic. , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 13
    • 84859888093 scopus 로고    scopus 로고
    • Are decision trees always greener on the open (source) side of the fence?
    • S.A. Moore, D.M. Daddario, J. Kurinskas, G.M. Weiss, Are decision trees always greener on the open (source) side of the fence?, in: Proceedings of DMIN, 2009, pp. 185-188.
    • (2009) Proceedings of DMIN , pp. 185-188
    • Moore, S.A.1    Daddario, D.M.2    Kurinskas, J.3    Weiss, G.M.4
  • 15
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • G. Pagallo, and D. Huassler Boolean feature discovery in empirical learning Mach. Learn. 5 1 1990 71 99
    • (1990) Mach. Learn. , vol.5 , Issue.1 , pp. 71-99
    • Pagallo, G.1    Huassler, D.2
  • 16
    • 0012984528 scopus 로고
    • Lookahead and pathology in decision tree induction
    • S. Murthy, S. Salzberg, Lookahead and pathology in decision tree induction, in: IJCAI, 1995, pp. 1025-1033.
    • (1995) IJCAI , pp. 1025-1033
    • Murthy, S.1    Salzberg, S.2
  • 22
    • 84910677328 scopus 로고    scopus 로고
    • OCCT: A one-class clustering tree for implementing one-to-many data linkage
    • M. Dror, A. Shabtai, L. Rokach, and Y. Elovici OCCT: a one-class clustering tree for implementing one-to-many data linkage IEEE Trans. Knowl. Data Eng. 26 3 2014 682 697
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.3 , pp. 682-697
    • Dror, M.1    Shabtai, A.2    Rokach, L.3    Elovici, Y.4
  • 24
    • 84871713974 scopus 로고    scopus 로고
    • Initial profile generation in recommender systems using pairwise comparison
    • L. Rokach, and S. Kisilevich Initial profile generation in recommender systems using pairwise comparison IEEE Trans. Syst. Man Cybernet. Part C: Appl. Rev. 42 6 2012 1854 1859
    • (2012) IEEE Trans. Syst. Man Cybernet. Part C: Appl. Rev. , vol.42 , Issue.6 , pp. 1854-1859
    • Rokach, L.1    Kisilevich, S.2
  • 26
    • 84923442411 scopus 로고    scopus 로고
    • Large-scale learning to rank using boosted decision trees
    • Cambridge U. Press
    • K.M. Svore, and C.J. Burges Large-scale learning to rank using boosted decision trees Scaling Up Machine Learning 2011 Cambridge U. Press
    • (2011) Scaling Up Machine Learning
    • Svore, K.M.1    Burges, C.J.2
  • 28
    • 84867877985 scopus 로고    scopus 로고
    • Attribute-driven hidden markov model trees for intention prediction
    • L. Antwarg, L. Rokach, and B. Shapira Attribute-driven hidden markov model trees for intention prediction IEEE Trans. Syst. Man Cybernet. Part C 42 6 2012 1103 1119
    • (2012) IEEE Trans. Syst. Man Cybernet. Part C , vol.42 , Issue.6 , pp. 1103-1119
    • Antwarg, L.1    Rokach, L.2    Shapira, B.3
  • 29
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • R. Polikar Ensemble based systems in decision making IEEE Circ. Syst. Mag. 6 3 2006 21 45
    • (2006) IEEE Circ. Syst. Mag. , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 31
    • 0018465664 scopus 로고
    • Composite classifier system design: Concepts and methodology
    • B.V. Dasarathy, and B.V. Sheela Composite classifier system design: concepts and methodology Proc. IEEE 67 5 1979 708 713
    • (1979) Proc. IEEE , vol.67 , Issue.5 , pp. 708-713
    • Dasarathy, B.V.1    Sheela, B.V.2
  • 32
    • 0000173488 scopus 로고
    • Tree-based models
    • J.M. Chambers, T.J. Hastie, Wadsworth & Brooks Pacific Grove, CA
    • L.A. Clark, and D. Pergibon Tree-based models J.M. Chambers, T.J. Hastie, Statistical Models in S 1992 Wadsworth & Brooks Pacific Grove, CA
    • (1992) Statistical Models in S
    • Clark, L.A.1    Pergibon, D.2
  • 34
    • 35348915328 scopus 로고    scopus 로고
    • Classifier ensembles: Select real-world applications
    • N.C. Oza, and K. Tumer Classifier ensembles: select real-world applications Inform. Fusion 9 1 2008 4 20
    • (2008) Inform. Fusion , vol.9 , Issue.1 , pp. 4-20
    • Oza, N.C.1    Tumer, K.2
  • 40
    • 84881072864 scopus 로고    scopus 로고
    • Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
    • M. Galar, A. Fernández, E. Barrenechea, and F. Herrera Eusboost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling Pattern Recogn. 46 12 2013 3460 3471
    • (2013) Pattern Recogn. , vol.46 , Issue.12 , pp. 3460-3471
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Herrera, F.4
  • 41
    • 33749419375 scopus 로고    scopus 로고
    • Decision trees for mining data streams
    • J. Gama, R. Fernandes, and R. Rocha Decision trees for mining data streams Intell. Data Anal. 10 1 2006 23 45
    • (2006) Intell. Data Anal. , vol.10 , Issue.1 , pp. 23-45
    • Gama, J.1    Fernandes, R.2    Rocha, R.3
  • 43
    • 77949913486 scopus 로고    scopus 로고
    • The impact of diversity on online ensemble learning in the presence of concept drift
    • L.L. Minku, A.P. White, and X. Yao The impact of diversity on online ensemble learning in the presence of concept drift IEEE Trans. Knowl. Data Eng. 22 5 2010 730 742
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.5 , pp. 730-742
    • Minku, L.L.1    White, A.P.2    Yao, X.3
  • 44
    • 84857738059 scopus 로고    scopus 로고
    • DDD: A new ensemble approach for dealing with concept drift
    • L.L. Minku, and X. Yao DDD: a new ensemble approach for dealing with concept drift IEEE Trans. Knowl. Data Eng. 24 4 2012 619 633
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.4 , pp. 619-633
    • Minku, L.L.1    Yao, X.2
  • 45
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • R. Bryll, R. Gutierrez-Osuna, and F. Quek Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets Pattern Recogn. 36 6 2003 1291 1302
    • (2003) Pattern Recogn. , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 46
    • 77955565395 scopus 로고    scopus 로고
    • Decision forest for classification of gene expression data
    • J. Huang, H. Fang, and X. Fan Decision forest for classification of gene expression data Comput. Biol. Med. 40 8 2010 698 704
    • (2010) Comput. Biol. Med. , vol.40 , Issue.8 , pp. 698-704
    • Huang, J.1    Fang, H.2    Fan, X.3
  • 47
    • 38349121661 scopus 로고    scopus 로고
    • Genetic algorithm-based feature set partitioning for classification problems
    • L. Rokach Genetic algorithm-based feature set partitioning for classification problems Pattern Recogn. 41 5 2008 1676 1700
    • (2008) Pattern Recogn. , vol.41 , Issue.5 , pp. 1676-1700
    • Rokach, L.1
  • 48
    • 33646426343 scopus 로고    scopus 로고
    • Data mining by attribute decomposition with semiconductor manufacturing case study
    • Springer US
    • O. Maimon, and L. Rokach Data mining by attribute decomposition with semiconductor manufacturing case study Data Mining for Design and Manufacturing 2001 Springer US 311 336
    • (2001) Data Mining for Design and Manufacturing , pp. 311-336
    • Maimon, O.1    Rokach, L.2
  • 50
    • 84876948280 scopus 로고    scopus 로고
    • A time series forest for classification and feature extraction
    • H. Deng, G. Runger, E. Tuv, and M. Vladimir A time series forest for classification and feature extraction Inform. Sci. 239 2013 142 153
    • (2013) Inform. Sci. , vol.239 , pp. 142-153
    • Deng, H.1    Runger, G.2    Tuv, E.3    Vladimir, M.4
  • 52
    • 84858795085 scopus 로고    scopus 로고
    • The impact of diversity on the accuracy of evidential classifier ensembles
    • Y. Bi The impact of diversity on the accuracy of evidential classifier ensembles Int. J. Approx. Reason. 53 4 2012 584 607
    • (2012) Int. J. Approx. Reason. , vol.53 , Issue.4 , pp. 584-607
    • Bi, Y.1
  • 53
    • 0003503113 scopus 로고
    • On the link between error correlation and error reduction in decision tree ensembles
    • University of California, Irvine
    • K.M. Ali, M.J. Pazzani, On the link between error correlation and error reduction in decision tree ensembles, Information and Computer Science, University of California, Irvine, 1995, pp. 95-38.
    • (1995) Information and Computer Science , pp. 95-38
    • Ali, K.M.1    Pazzani, M.J.2
  • 55
    • 25444484657 scopus 로고    scopus 로고
    • Managing diversity in regression ensembles
    • G. Brown, J.L. Wyatt, and P. Tivno Managing diversity in regression ensembles J. Mach. Learn. Res. 6 2005 1621 1650
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1621-1650
    • Brown, G.1    Wyatt, J.L.2    Tivno, P.3
  • 56
    • 84855493529 scopus 로고    scopus 로고
    • Parameter determination and feature selection for C4.5 algorithm using scatter search approach
    • S.W. Lin, and S.C. Chen Parameter determination and feature selection for C4.5 algorithm using scatter search approach Soft Comput. 16 1 2012 63 75
    • (2012) Soft Comput. , vol.16 , Issue.1 , pp. 63-75
    • Lin, S.W.1    Chen, S.C.2
  • 58
    • 79958861311 scopus 로고    scopus 로고
    • Feature-subspace aggregating: Ensembles for stable and unstable learners
    • K.M. Ting, J.R. Wells, S.C. Tan, S.W. Teng, and G.I. Webb Feature-subspace aggregating: ensembles for stable and unstable learners Mach. Learn. 82 3 2011 375 397
    • (2011) Mach. Learn. , vol.82 , Issue.3 , pp. 375-397
    • Ting, K.M.1    Wells, J.R.2    Tan, S.C.3    Teng, S.W.4    Webb, G.I.5
  • 60
    • 44449124996 scopus 로고    scopus 로고
    • RotBoost: A technique for combining Rotation Forest and AdaBoost
    • C.X. Zhang, and J.S. Zhang RotBoost: a technique for combining Rotation Forest and AdaBoost Pattern Recogn. Lett. 29 10 2008 1524 1536
    • (2008) Pattern Recogn. Lett. , vol.29 , Issue.10 , pp. 1524-1536
    • Zhang, C.X.1    Zhang, J.S.2
  • 62
    • 77950296222 scopus 로고    scopus 로고
    • Semi-supervised learning for tree-structured ensembles of RBF networks with co-training
    • M.F.A. Hady, F. Schwenker, and G. Palm Semi-supervised learning for tree-structured ensembles of RBF networks with co-training Neural Networks 23 4 2010 497 509
    • (2010) Neural Networks , vol.23 , Issue.4 , pp. 497-509
    • Hady, M.F.A.1    Schwenker, F.2    Palm, G.3
  • 64
    • 0030356238 scopus 로고    scopus 로고
    • Actively searching for an effective neural network ensemble
    • D.W. Opitz, and J.W. Shavlik Actively searching for an effective neural network ensemble Connect. Sci. 8 3-4 1996 337 354
    • (1996) Connect. Sci. , vol.8 , Issue.3-4 , pp. 337-354
    • Opitz, D.W.1    Shavlik, J.W.2
  • 66
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms including confidence-rated predictions
    • R.E. Shapire, and Y. Singer Improved boosting algorithms including confidence-rated predictions Mach. Learn. 37 1999 297 336
    • (1999) Mach. Learn. , vol.37 , pp. 297-336
    • Shapire, R.E.1    Singer, Y.2
  • 69
    • 70349750474 scopus 로고    scopus 로고
    • Troika-an improved stacking schema for classification tasks
    • E. Menahem, L. Rokach, and Y. Elovici Troika-an improved stacking schema for classification tasks Inform. Sci. 179 24 2009 4097 4122
    • (2009) Inform. Sci. , vol.179 , Issue.24 , pp. 4097-4122
    • Menahem, E.1    Rokach, L.2    Elovici, Y.3
  • 70
    • 84933552675 scopus 로고    scopus 로고
    • Grading Classifiers, Austrian Research Institute for Artificial intelligence
    • A.K. Seewald, J. Faurnkranz, Grading Classifiers, Austrian Research Institute for Artificial intelligence, 2001.
    • (2001)
    • Seewald, A.K.1    Faurnkranz, J.2
  • 72
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123 140
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 73
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Mach. Learn. 45 1 2001 5 32
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 76
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Mach. Learn. 40 2 2000 139 157
    • (2000) Mach. Learn. , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 78
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T.K. Ho The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 20 8 1998 832 844
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 83
    • 65949106613 scopus 로고    scopus 로고
    • Random projection ensemble classifiers
    • Springer Berlin, Heidelberg
    • A. Schclar, and L. Rokach Random projection ensemble classifiers Enterprise Information Systems 2009 Springer Berlin, Heidelberg 309 316
    • (2009) Enterprise Information Systems , pp. 309-316
    • Schclar, A.1    Rokach, L.2
  • 84
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J.H. Friedman Greedy function approximation: a gradient boosting machine Ann. Stat. 2001 1189 1232
    • (2001) Ann. Stat. , pp. 1189-1232
    • Friedman, J.H.1
  • 87
    • 0034276320 scopus 로고    scopus 로고
    • Randomizing outputs to increase prediction accuracy
    • L. Breiman Randomizing outputs to increase prediction accuracy Mach. Learn. 40 3 2000 229 242
    • (2000) Mach. Learn. , vol.40 , Issue.3 , pp. 229-242
    • Breiman, L.1
  • 88
    • 22844439516 scopus 로고    scopus 로고
    • Switching class labels to generate classification ensembles
    • G. Martínez-Muñoz, and A. Suárez Switching class labels to generate classification ensembles Pattern Recogn. 38 10 2005 1483 1494
    • (2005) Pattern Recogn. , vol.38 , Issue.10 , pp. 1483-1494
    • Martínez-Muñoz, G.1    Suárez, A.2
  • 89
    • 0001931577 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms: bagging, boosting, and variants Mach. Learn. 35 1999 1 38
    • (1999) Mach. Learn. , vol.35 , pp. 1-38
    • Bauer, E.1    Kohavi, R.2
  • 90
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • D. Opitz, and R. Maclin Popular ensemble methods: an empirical study J. Artif. Res. 11 1999 169 198
    • (1999) J. Artif. Res. , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 96
    • 77955032649 scopus 로고    scopus 로고
    • Planet: Massively parallel learning of tree ensembles with mapreduce
    • B. Panda, J.S. Herbach, S. Basu, and R.J. Bayardo Planet: massively parallel learning of tree ensembles with mapreduce Proc. VLDB Endowment 2 2 2009 1426 1437
    • (2009) Proc. VLDB Endowment , vol.2 , Issue.2 , pp. 1426-1437
    • Panda, B.1    Herbach, J.S.2    Basu, S.3    Bayardo, R.J.4
  • 98
    • 84865330735 scopus 로고    scopus 로고
    • Scalable and parallel boosting with mapreduce
    • I. Palit, and C.K. Reddy Scalable and parallel boosting with mapreduce IEEE Trans. Knowl. Data Eng. 24 10 2012 1904 1916
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.10 , pp. 1904-1916
    • Palit, I.1    Reddy, C.K.2
  • 99
    • 84906873734 scopus 로고    scopus 로고
    • On the use of MapReduce for imbalanced big data using Random Forest
    • S. del Río, V. López, J.M. Benítez, and F. Herrera On the use of MapReduce for imbalanced big data using Random Forest Inform. Sci. 285 2014 112 137
    • (2014) Inform. Sci. , vol.285 , pp. 112-137
    • Del Río, S.1    López, V.2    Benítez, J.M.3    Herrera, F.4
  • 103
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.H. Zhou, J. Wu, and W. Tang Ensembling neural networks: many could be better than all Artif. Intell. 137 2002 239 263
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3
  • 105
    • 84856600382 scopus 로고    scopus 로고
    • Efficient prediction algorithms for binary decomposition techniques
    • S.H. Park, and J. Furnkranz Efficient prediction algorithms for binary decomposition techniques Data Min. Knowl. Disc. 2012 1 38
    • (2012) Data Min. Knowl. Disc. , pp. 1-38
    • Park, S.H.1    Furnkranz, J.2
  • 109
    • 34547654182 scopus 로고    scopus 로고
    • EROS: Ensemble rough subspaces
    • Q. Hu, D. Yu, Z. Xie, and X. Li EROS: ensemble rough subspaces Pattern Recogn. 40 2007 3728 3739
    • (2007) Pattern Recogn. , vol.40 , pp. 3728-3739
    • Hu, Q.1    Yu, D.2    Xie, Z.3    Li, X.4
  • 110
  • 111
    • 78049528785 scopus 로고    scopus 로고
    • An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
    • I. Partalas, G. Tsoumakas, and I. Vlahavas An ensemble uncertainty aware measure for directed hill climbing ensemble pruning Mach. Learn. 81 3 2010 257 282
    • (2010) Mach. Learn. , vol.81 , Issue.3 , pp. 257-282
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 112
    • 58549093526 scopus 로고    scopus 로고
    • Collective-agreement-based pruning of ensembles
    • L. Rokach Collective-agreement-based pruning of ensembles Comput. Stat. Data Anal. 53 4 2009 1015 1026
    • (2009) Comput. Stat. Data Anal. , vol.53 , Issue.4 , pp. 1015-1026
    • Rokach, L.1
  • 113
    • 84863447426 scopus 로고    scopus 로고
    • Search for the smallest random forest
    • H. Zhang, and M. Wang Search for the smallest random forest Stat. Interface 2 2009 381 388
    • (2009) Stat. Interface , vol.2 , pp. 381-388
    • Zhang, H.1    Wang, M.2
  • 114
    • 8344279588 scopus 로고    scopus 로고
    • Selective Ensemble of Decision Trees
    • Guoyin Wang, Qing Liu, Yiyu Yao, Andrzej Skowron (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing
    • Z.H. Zhou, W. Tang, Selective ensemble of decision trees, in: Guoyin Wang, Qing Liu, Yiyu Yao, Andrzej Skowron (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, 9th International Conference, RSFDGrC, Chongqing, China, Proceedings, Lecture Notes in Computer Science, vol. 2639, 2003, pp. 476-483.
    • (2003) 9th International Conference, RSFDGrC, Chongqing, China, Proceedings, Lecture Notes in Computer Science , vol.2639 , pp. 476-483
    • Zhou, Z.H.1    Tang, W.2
  • 117
    • 0012467735 scopus 로고    scopus 로고
    • Cost complexity-based pruning of ensemble classifiers
    • A.L. Prodromidis, and S.J. Stolfo Cost complexity-based pruning of ensemble classifiers Knowl. Inform. Syst. 3 4 2001 449 469
    • (2001) Knowl. Inform. Syst. , vol.3 , Issue.4 , pp. 449-469
    • Prodromidis, A.L.1    Stolfo, S.J.2
  • 119
    • 33745794076 scopus 로고    scopus 로고
    • Ensemble pruning via semi-definite programming
    • Y. Zhang, S. Burer, and W.N. Street Ensemble pruning via semi-definite programming J. Mach. Learn. Res. 7 2006 1315 1338
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1315-1338
    • Zhang, Y.1    Burer, S.2    Street, W.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.