메뉴 건너뛰기




Volumn 43, Issue 6, 2010, Pages 2340-2350

Selection-fusion approach for classification of datasets with missing values

Author keywords

Ensemble classifiers; Missing value management; Multiple imputations; Pruning; Subspace classifiers; Support vector machine (SVM)

Indexed keywords

CLASSIFICATION ACCURACY; CLUSTERING PROBLEMS; DATA SETS; DETROIT; ENSEMBLE CLASSIFIERS; HENRY FORD; INCOMPLETE DATA; MATHEMATICAL FRAMEWORKS; MICHIGAN; MISSING VALUES; MULTIPLE IMPUTATION; NEW APPROACHES; NUMBER OF SAMPLES; NUMERICAL CRITERIA; PATTERN DISCOVERY; SUBSET SELECTION; SUBSPACE CLASSIFIER; TRADE OFF; UNIVERSITY OF CALIFORNIA;

EID: 76749163647     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.12.003     Document Type: Article
Times cited : (35)

References (28)
  • 2
    • 0242498488 scopus 로고    scopus 로고
    • An analysis of four missing data treatment methods for supervised learning
    • Batista P.A., and Monard M.C. An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence 17 (2003) 519-533
    • (2003) Applied Artificial Intelligence , vol.17 , pp. 519-533
    • Batista, P.A.1    Monard, M.C.2
  • 3
    • 0033225727 scopus 로고    scopus 로고
    • Imputation of missing data in industrial databases
    • Lakshminarayan K., Harp S.A., and Samad T. Imputation of missing data in industrial databases. Applied Intelligence 11 3 (1999) 259-275
    • (1999) Applied Intelligence , vol.11 , Issue.3 , pp. 259-275
    • Lakshminarayan, K.1    Harp, S.A.2    Samad, T.3
  • 4
    • 33751567719 scopus 로고    scopus 로고
    • A comparison of stacking with meta decision trees to bagging, boosting, and stacking with other methods
    • Zenko B., Todorovski L., and Dzeroski S. A comparison of stacking with meta decision trees to bagging, boosting, and stacking with other methods. Journal of the American Statistical Association 84 (2001) 669-670
    • (2001) Journal of the American Statistical Association , vol.84 , pp. 669-670
    • Zenko, B.1    Todorovski, L.2    Dzeroski, S.3
  • 6
    • 0003704318 scopus 로고    scopus 로고
    • Department of information and Computer Science, Irvine, CA
    • S. Hettich, S.D. Bay, The UCI KDD Archive, http://kdd.ics.uci.edu, Department of information and Computer Science, Irvine, CA, 1999.
    • (1999) The UCI KDD Archive
    • Hettich, S.1    Bay, S.D.2
  • 8
    • 0041182327 scopus 로고    scopus 로고
    • The generalized estimating equation approach when data are not missing completely at random
    • Myunghee Cho P. The generalized estimating equation approach when data are not missing completely at random. Journal of the American Statistical Association 92 (1997) 1320
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 1320
    • Myunghee Cho, P.1
  • 10
    • 0036832985 scopus 로고    scopus 로고
    • A pseudo-nearest-neighbor approach for missing data recovery on Gaussian random data sets
    • Huang X., and Zhu Q. A pseudo-nearest-neighbor approach for missing data recovery on Gaussian random data sets. Pattern Recognition Letters 23 (2002) 1613-1622
    • (2002) Pattern Recognition Letters , vol.23 , pp. 1613-1622
    • Huang, X.1    Zhu, Q.2
  • 11
    • 33644976711 scopus 로고    scopus 로고
    • On fast supervised learning for normal mixture models with missing information
    • Lin T.I., Lee J.C., and Ho H.J. On fast supervised learning for normal mixture models with missing information. Pattern Recognition 39 (2006) 1177-1187
    • (2006) Pattern Recognition , vol.39 , pp. 1177-1187
    • Lin, T.I.1    Lee, J.C.2    Ho, H.J.3
  • 13
    • 0037806811 scopus 로고    scopus 로고
    • The boosting approach to machine learning: an overview
    • Denison D.D., Hansen M.H., Holmes C., Mallick B., and Yu B. (Eds), Springer, Berlin
    • Schapire R.E. The boosting approach to machine learning: an overview. In: Denison D.D., Hansen M.H., Holmes C., Mallick B., and Yu B. (Eds). Nonlinear Estimation and Classification (2003), Springer, Berlin
    • (2003) Nonlinear Estimation and Classification
    • Schapire, R.E.1
  • 16
    • 32044473249 scopus 로고    scopus 로고
    • Using mutual information of errors for selecting members of a committee classifier
    • Aksela M., and Laaksonen J. Using mutual information of errors for selecting members of a committee classifier. Pattern Recognition 39 (2006) 608-623
    • (2006) Pattern Recognition , vol.39 , pp. 608-623
    • Aksela, M.1    Laaksonen, J.2
  • 17
    • 34547654182 scopus 로고    scopus 로고
    • EROS: ensemble rough subspaces
    • Hu Q., Yu D., Xie Z., and Li X. EROS: ensemble rough subspaces. Pattern Recognition 40 (2007) 3728-3739
    • (2007) Pattern Recognition , vol.40 , pp. 3728-3739
    • Hu, Q.1    Yu, D.2    Xie, Z.3    Li, X.4
  • 18
    • 33847173765 scopus 로고    scopus 로고
    • Classification for incomplete data using classifier ensembles
    • K. Jiang, H. Chen, S. Yuan, Classification for incomplete data using classifier ensembles, in: Proceedings of the 45th Institute of CETC, vol. 1, 2006, pp. 559-563.
    • (2006) Proceedings of the 45th Institute of CETC , vol.1 , pp. 559-563
    • Jiang, K.1    Chen, H.2    Yuan, S.3
  • 19
    • 28444438521 scopus 로고    scopus 로고
    • Using dependencies between attributes to identify and correct the mistakes in SARS data set
    • Feng H., Liu B., He L., Yang B., and Chen Y. Using dependencies between attributes to identify and correct the mistakes in SARS data set. Intelligent Data Analysis 9 (2005) 5678-5681
    • (2005) Intelligent Data Analysis , vol.9 , pp. 5678-5681
    • Feng, H.1    Liu, B.2    He, L.3    Yang, B.4    Chen, Y.5
  • 20
    • 33845190826 scopus 로고    scopus 로고
    • Discriminative learning for minimum error and minimum reject classification
    • Mizutani H. Discriminative learning for minimum error and minimum reject classification. Intelligent Data Analysis 1 (1999) 136-140
    • (1999) Intelligent Data Analysis , vol.1 , pp. 136-140
    • Mizutani, H.1
  • 21
    • 2142721384 scopus 로고    scopus 로고
    • Analysis of error-reject trade-off in linearly combined classifiers
    • Roli F., Fumera G., and Vernazza G. Analysis of error-reject trade-off in linearly combined classifiers. Intelligent Data Analysis 2 (2002) 120-123
    • (2002) Intelligent Data Analysis , vol.2 , pp. 120-123
    • Roli, F.1    Fumera, G.2    Vernazza, G.3
  • 22
    • 17444370548 scopus 로고    scopus 로고
    • A new maximum margin algorithm for one-class problems and its boosting implementation
    • Tao Q., Wu G., and Wang J. A new maximum margin algorithm for one-class problems and its boosting implementation. Pattern Recognition 38 (2005) 1071-1077
    • (2005) Pattern Recognition , vol.38 , pp. 1071-1077
    • Tao, Q.1    Wu, G.2    Wang, J.3
  • 25
    • 76749096114 scopus 로고    scopus 로고
    • E.G. Giannopoulou Ed, Data Mining in Medical and Biological Research, I-Tech Education and Publishing KG, Vienna, Austria, November, Chapter 8
    • M. Ghannad-Rezaie, H. Soltanian-Zadeh, Interactive knowledge discovery for temporal lobe epilepsy, in: E.G. Giannopoulou (Ed.), Data Mining in Medical and Biological Research, I-Tech Education and Publishing KG, Vienna, Austria, November 2008 (Chapter 8).
    • (2008) Interactive knowledge discovery for temporal lobe epilepsy
    • Ghannad-Rezaie, M.1    Soltanian-Zadeh, H.2
  • 26
    • 33644976711 scopus 로고    scopus 로고
    • On fast supervised learning for normal mixture models with missing information
    • Lin T.I., Lee J.C., and Ho H.J. On fast supervised learning for normal mixture models with missing information. Pattern Recognition 39 (2006) 1177-1187
    • (2006) Pattern Recognition , vol.39 , pp. 1177-1187
    • Lin, T.I.1    Lee, J.C.2    Ho, H.J.3
  • 27


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.