-
2
-
-
0242498488
-
An analysis of four missing data treatment methods for supervised learning
-
Batista P.A., and Monard M.C. An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence 17 (2003) 519-533
-
(2003)
Applied Artificial Intelligence
, vol.17
, pp. 519-533
-
-
Batista, P.A.1
Monard, M.C.2
-
3
-
-
0033225727
-
Imputation of missing data in industrial databases
-
Lakshminarayan K., Harp S.A., and Samad T. Imputation of missing data in industrial databases. Applied Intelligence 11 3 (1999) 259-275
-
(1999)
Applied Intelligence
, vol.11
, Issue.3
, pp. 259-275
-
-
Lakshminarayan, K.1
Harp, S.A.2
Samad, T.3
-
4
-
-
33751567719
-
A comparison of stacking with meta decision trees to bagging, boosting, and stacking with other methods
-
Zenko B., Todorovski L., and Dzeroski S. A comparison of stacking with meta decision trees to bagging, boosting, and stacking with other methods. Journal of the American Statistical Association 84 (2001) 669-670
-
(2001)
Journal of the American Statistical Association
, vol.84
, pp. 669-670
-
-
Zenko, B.1
Todorovski, L.2
Dzeroski, S.3
-
6
-
-
0003704318
-
-
Department of information and Computer Science, Irvine, CA
-
S. Hettich, S.D. Bay, The UCI KDD Archive, http://kdd.ics.uci.edu, Department of information and Computer Science, Irvine, CA, 1999.
-
(1999)
The UCI KDD Archive
-
-
Hettich, S.1
Bay, S.D.2
-
8
-
-
0041182327
-
The generalized estimating equation approach when data are not missing completely at random
-
Myunghee Cho P. The generalized estimating equation approach when data are not missing completely at random. Journal of the American Statistical Association 92 (1997) 1320
-
(1997)
Journal of the American Statistical Association
, vol.92
, pp. 1320
-
-
Myunghee Cho, P.1
-
10
-
-
0036832985
-
A pseudo-nearest-neighbor approach for missing data recovery on Gaussian random data sets
-
Huang X., and Zhu Q. A pseudo-nearest-neighbor approach for missing data recovery on Gaussian random data sets. Pattern Recognition Letters 23 (2002) 1613-1622
-
(2002)
Pattern Recognition Letters
, vol.23
, pp. 1613-1622
-
-
Huang, X.1
Zhu, Q.2
-
11
-
-
33644976711
-
On fast supervised learning for normal mixture models with missing information
-
Lin T.I., Lee J.C., and Ho H.J. On fast supervised learning for normal mixture models with missing information. Pattern Recognition 39 (2006) 1177-1187
-
(2006)
Pattern Recognition
, vol.39
, pp. 1177-1187
-
-
Lin, T.I.1
Lee, J.C.2
Ho, H.J.3
-
13
-
-
0037806811
-
The boosting approach to machine learning: an overview
-
Denison D.D., Hansen M.H., Holmes C., Mallick B., and Yu B. (Eds), Springer, Berlin
-
Schapire R.E. The boosting approach to machine learning: an overview. In: Denison D.D., Hansen M.H., Holmes C., Mallick B., and Yu B. (Eds). Nonlinear Estimation and Classification (2003), Springer, Berlin
-
(2003)
Nonlinear Estimation and Classification
-
-
Schapire, R.E.1
-
16
-
-
32044473249
-
Using mutual information of errors for selecting members of a committee classifier
-
Aksela M., and Laaksonen J. Using mutual information of errors for selecting members of a committee classifier. Pattern Recognition 39 (2006) 608-623
-
(2006)
Pattern Recognition
, vol.39
, pp. 608-623
-
-
Aksela, M.1
Laaksonen, J.2
-
18
-
-
33847173765
-
Classification for incomplete data using classifier ensembles
-
K. Jiang, H. Chen, S. Yuan, Classification for incomplete data using classifier ensembles, in: Proceedings of the 45th Institute of CETC, vol. 1, 2006, pp. 559-563.
-
(2006)
Proceedings of the 45th Institute of CETC
, vol.1
, pp. 559-563
-
-
Jiang, K.1
Chen, H.2
Yuan, S.3
-
19
-
-
28444438521
-
Using dependencies between attributes to identify and correct the mistakes in SARS data set
-
Feng H., Liu B., He L., Yang B., and Chen Y. Using dependencies between attributes to identify and correct the mistakes in SARS data set. Intelligent Data Analysis 9 (2005) 5678-5681
-
(2005)
Intelligent Data Analysis
, vol.9
, pp. 5678-5681
-
-
Feng, H.1
Liu, B.2
He, L.3
Yang, B.4
Chen, Y.5
-
20
-
-
33845190826
-
Discriminative learning for minimum error and minimum reject classification
-
Mizutani H. Discriminative learning for minimum error and minimum reject classification. Intelligent Data Analysis 1 (1999) 136-140
-
(1999)
Intelligent Data Analysis
, vol.1
, pp. 136-140
-
-
Mizutani, H.1
-
21
-
-
2142721384
-
Analysis of error-reject trade-off in linearly combined classifiers
-
Roli F., Fumera G., and Vernazza G. Analysis of error-reject trade-off in linearly combined classifiers. Intelligent Data Analysis 2 (2002) 120-123
-
(2002)
Intelligent Data Analysis
, vol.2
, pp. 120-123
-
-
Roli, F.1
Fumera, G.2
Vernazza, G.3
-
22
-
-
17444370548
-
A new maximum margin algorithm for one-class problems and its boosting implementation
-
Tao Q., Wu G., and Wang J. A new maximum margin algorithm for one-class problems and its boosting implementation. Pattern Recognition 38 (2005) 1071-1077
-
(2005)
Pattern Recognition
, vol.38
, pp. 1071-1077
-
-
Tao, Q.1
Wu, G.2
Wang, J.3
-
24
-
-
33745001219
-
Soft computing approaches to computer aided decision making for temporal lobe epilepsy
-
M. Ghannad-Rezaie, H. Soltanian-Zadeh, M.R. Siadat, K.V. Elisevich, Soft computing approaches to computer aided decision making for temporal lobe epilepsy, in: IEEE Conference on Image Processing, vol. 2, 2005, pp. 42-45.
-
(2005)
IEEE Conference on Image Processing
, vol.2
, pp. 42-45
-
-
Ghannad-Rezaie, M.1
Soltanian-Zadeh, H.2
Siadat, M.R.3
Elisevich, K.V.4
-
25
-
-
76749096114
-
-
E.G. Giannopoulou Ed, Data Mining in Medical and Biological Research, I-Tech Education and Publishing KG, Vienna, Austria, November, Chapter 8
-
M. Ghannad-Rezaie, H. Soltanian-Zadeh, Interactive knowledge discovery for temporal lobe epilepsy, in: E.G. Giannopoulou (Ed.), Data Mining in Medical and Biological Research, I-Tech Education and Publishing KG, Vienna, Austria, November 2008 (Chapter 8).
-
(2008)
Interactive knowledge discovery for temporal lobe epilepsy
-
-
Ghannad-Rezaie, M.1
Soltanian-Zadeh, H.2
-
26
-
-
33644976711
-
On fast supervised learning for normal mixture models with missing information
-
Lin T.I., Lee J.C., and Ho H.J. On fast supervised learning for normal mixture models with missing information. Pattern Recognition 39 (2006) 1177-1187
-
(2006)
Pattern Recognition
, vol.39
, pp. 1177-1187
-
-
Lin, T.I.1
Lee, J.C.2
Ho, H.J.3
-
28
-
-
2942657055
-
The methods for handling missing data in clinical trials influence sample size requirements
-
Auleley G.-R., Giraudeau B., Baron G., Maillefert J.-F., Dougados M., and Ravaud P. The methods for handling missing data in clinical trials influence sample size requirements. Journal of Clinical Epidemiology 57 (2004) 447-453
-
(2004)
Journal of Clinical Epidemiology
, vol.57
, pp. 447-453
-
-
Auleley, G.-R.1
Giraudeau, B.2
Baron, G.3
Maillefert, J.-F.4
Dougados, M.5
Ravaud, P.6
|