-
2
-
-
0242498488
-
An analysis of four missing data treatment methods for supervised learning
-
G.E. Batista, M.C. Monard, An analysis of four missing data treatment methods for supervised learning, in: Applied Artificial Intelligence, vol. 17, pp. 519-533.
-
Applied Artificial Intelligence
, vol.17
, pp. 519-533
-
-
Batista, G.E.1
Monard, M.C.2
-
3
-
-
0030211964
-
Bagging predictors
-
L. Breiman Bagging predictors Mach. Learn. 24 1996 123 140
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0346786584
-
Arcing classifiers
-
L. Breiman Arcing classifiers Ann. Statist. 26 1998 801 849
-
(1998)
Ann. Statist.
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
5
-
-
0035478854
-
Random forests
-
L. Breiman Random forests Mach. Learn. 45 2001 5 32
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
7
-
-
0043289776
-
Analyzing bagging
-
P. Bühlmann, and B. Yu Analyzing bagging Ann. Stat. 30 2002 927 961
-
(2002)
Ann. Stat.
, vol.30
, pp. 927-961
-
-
Bühlmann, P.1
Yu, B.2
-
8
-
-
77958547578
-
Multiple imputation for missing data via sequential regression trees
-
L.F. Burgette, and J.P. Reiter Multiple imputation for missing data via sequential regression trees Am. J. Epidemiol. 172 2010 1070 1076
-
(2010)
Am. J. Epidemiol.
, vol.172
, pp. 1070-1076
-
-
Burgette, L.F.1
Reiter, J.P.2
-
9
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A.P. Dempster, N.M. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm J. Roy. Stat. Soc. B 39 1977 1 38
-
(1977)
J. Roy. Stat. Soc. B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
10
-
-
0004053609
-
Machine learning bias, statistical bias, and statistical variance of decision tree algorithms
-
T.G. Dietterich, and E.B. Kong Machine learning bias, statistical bias, and statistical variance of decision tree algorithms Mach. Learn. 255 1995 0 13
-
(1995)
Mach. Learn.
, vol.255
, pp. 0-13
-
-
Dietterich, T.G.1
Kong, E.B.2
-
11
-
-
84888869357
-
Recursive partitioning for missing data imputation in the presence of interaction effects
-
L.L. Doove, S. Van Buuren, and E. Dusseldorp Recursive partitioning for missing data imputation in the presence of interaction effects Comput. Stat. Data Anal. 72 2014 92 104
-
(2014)
Comput. Stat. Data Anal.
, vol.72
, pp. 92-104
-
-
Doove, L.L.1
Van Buuren, S.2
Dusseldorp, E.3
-
12
-
-
0002344794
-
Bootstrap methods: Another look at the jackknife
-
B. Efron Bootstrap methods: another look at the jackknife Ann. Stat. 7 1979 1 26
-
(1979)
Ann. Stat.
, vol.7
, pp. 1-26
-
-
Efron, B.1
-
15
-
-
84857652587
-
Recursive partitioning on incomplete data using surrogate decisions and multiple imputation
-
A. Hapfelmeier, T. Hothorn, and K. Ulm Recursive partitioning on incomplete data using surrogate decisions and multiple imputation Comput. Stat. Data Anal. 56 2012 1552 1565
-
(2012)
Comput. Stat. Data Anal.
, vol.56
, pp. 1552-1565
-
-
Hapfelmeier, A.1
Hothorn, T.2
Ulm, K.3
-
16
-
-
84904347710
-
Variable selection by Random Forests using data with missing values
-
A. Hapfelmeier, and K. Ulm Variable selection by Random Forests using data with missing values Comput. Stat. Data Anal. 80 2014 129 139
-
(2014)
Comput. Stat. Data Anal.
, vol.80
, pp. 129-139
-
-
Hapfelmeier, A.1
Ulm, K.2
-
19
-
-
33846873244
-
Much ado about nothing: A comparison of missing data methods and software to fit incomplete data regression models
-
N.J. Horton, and K.P. Kleinman Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models Am. Stat. 61 2007 79 90
-
(2007)
Am. Stat.
, vol.61
, pp. 79-90
-
-
Horton, N.J.1
Kleinman, K.P.2
-
20
-
-
33748089054
-
-
R Package Version 0.9-99996
-
T. Hothorn, K. Hornik, C. Strobl, A. Zeileis, Party: A Laboratory for Recursive part(y)itioning, R Package Version 0.9-99996, 2011.
-
(2011)
Party: A Laboratory for Recursive Part(y)itioning
-
-
Hothorn, T.1
Hornik, K.2
Strobl, C.3
Zeileis, A.4
-
21
-
-
33749677657
-
Unbiased recursive partitioning: A conditional inference framework
-
T. Hothorn, K. Hornik, and A. Zeileis Unbiased recursive partitioning: a conditional inference framework J. Comput. Graph. Stat. 15 2006 651 674
-
(2006)
J. Comput. Graph. Stat.
, vol.15
, pp. 651-674
-
-
Hothorn, T.1
Hornik, K.2
Zeileis, A.3
-
23
-
-
49449091081
-
Use of multiple imputation in the epidemiologic literature
-
M.A. Klebanoff, and S.R. Cole Use of multiple imputation in the epidemiologic literature Am. J. Epidemiol. 168 2008 355 357
-
(2008)
Am. J. Epidemiol.
, vol.168
, pp. 355-357
-
-
Klebanoff, M.A.1
Cole, S.R.2
-
24
-
-
84920822273
-
Missing value imputation in high-dimensional phenomic data: Imputable or not, and how?
-
S.G. Liao, Y. Lin, D.D. Kang, D. Chandra, J. Bon, N. Kaminski, F.C. Sciurba, and G.C. Tseng Missing value imputation in high-dimensional phenomic data: imputable or not, and how? BMC Bioinform. 15 2014 346
-
(2014)
BMC Bioinform.
, vol.15
, pp. 346
-
-
Liao, S.G.1
Lin, Y.2
Kang, D.D.3
Chandra, D.4
Bon, J.5
Kaminski, N.6
Sciurba, F.C.7
Tseng, G.C.8
-
25
-
-
0345040873
-
Classification and regression by randomForest
-
A. Liaw, and M. Wiener Classification and regression by randomForest R News 2 2002 18 22
-
(2002)
R News
, vol.2
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
28
-
-
84888873861
-
Stability and structure of CART and SPAN search generated data partitions for the analysis of low birth weight
-
R.J. Marshall, and P. Kitsantas Stability and structure of CART and SPAN search generated data partitions for the analysis of low birth weight J. Data Sci. 10 2012 61 73
-
(2012)
J. Data Sci.
, vol.10
, pp. 61-73
-
-
Marshall, R.J.1
Kitsantas, P.2
-
32
-
-
84857643916
-
-
Technical Report 79, Ludwig-Maximilians-Universität Munich, Germany
-
A. Rieger, T. Hothorn, C. Strobl, Random Forests with Missing Values in the Covariates, Technical Report 79, Ludwig-Maximilians-Universität Munich, Germany, 2010.
-
(2010)
Random Forests with Missing Values in the Covariates
-
-
Rieger, A.1
Hothorn, T.2
Strobl, C.3
-
33
-
-
0000135972
-
The Bayesian bootstrap
-
D.B. Rubin The Bayesian bootstrap Ann. Stat. 9 1981 130 134
-
(1981)
Ann. Stat.
, vol.9
, pp. 130-134
-
-
Rubin, D.B.1
-
35
-
-
0030539070
-
Multiple imputation after 18+ years
-
D.B. Rubin Multiple imputation after 18+ years J. Am. Stat. Assoc. 91 1996 473 489
-
(1996)
J. Am. Stat. Assoc.
, vol.91
, pp. 473-489
-
-
Rubin, D.B.1
-
36
-
-
34547696888
-
Handling missing values when applying classification models
-
M. Saar-Tsechansky, and F. Provost Handling missing values when applying classification models J. Mach. Learn. Res. 8 2007 1625 1657
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 1625-1657
-
-
Saar-Tsechansky, M.1
Provost, F.2
-
38
-
-
84895894249
-
Comparison of random forest and parametric imputation models for imputing missing data using MICE: A CALIBER study
-
A.D. Shah, J.W. Bartlett, J. Carpenter, O. Nicholas, and H. Hemingway Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study Am. J. Epidemiol. 179 2014 764 774
-
(2014)
Am. J. Epidemiol.
, vol.179
, pp. 764-774
-
-
Shah, A.D.1
Bartlett, J.W.2
Carpenter, J.3
Nicholas, O.4
Hemingway, H.5
-
39
-
-
84855177476
-
Missforest-Non-parametric missing value imputation for mixed-type data
-
D.J. Stekhoven, and P. Bühlmann Missforest-Non-parametric missing value imputation for mixed-type data Bioinformatics 28 2012 112 118
-
(2012)
Bioinformatics
, vol.28
, pp. 112-118
-
-
Stekhoven, D.J.1
Bühlmann, P.2
-
40
-
-
84950758368
-
The calculation of posterior distributions by data augmentation
-
M.A. Tanner, and W.H. Wong The calculation of posterior distributions by data augmentation J. Am. Stat. Assoc. 82 1987 528 540
-
(1987)
J. Am. Stat. Assoc.
, vol.82
, pp. 528-540
-
-
Tanner, M.A.1
Wong, W.H.2
-
42
-
-
84927734327
-
Bias, variance and prediction error for classification rules
-
R. Tibshirani Bias, variance and prediction error for classification rules Monogr. Soc. Res. Child Dev. 79 1996 1 14
-
(1996)
Monogr. Soc. Res. Child Dev.
, vol.79
, pp. 1-14
-
-
Tibshirani, R.1
-
43
-
-
0034960264
-
Missing value estimation methods for DNA microarrays
-
O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, and R.B. Altman Missing value estimation methods for DNA microarrays Bioinformatics 17 2001 520 525
-
(2001)
Bioinformatics
, vol.17
, pp. 520-525
-
-
Troyanskaya, O.1
Cantor, M.2
Sherlock, G.3
Brown, P.4
Hastie, T.5
Tibshirani, R.6
Botstein, D.7
Altman, R.B.8
-
47
-
-
79953732420
-
MICE: Multivariate imputation by chained equations in R
-
S. Van Buuren, and K. Groothuis-Oudshoorn MICE: multivariate imputation by chained equations in R J. Stat. Software 45 2011 1 67
-
(2011)
J. Stat. Software
, vol.45
, pp. 1-67
-
-
Van Buuren, S.1
Groothuis-Oudshoorn, K.2
-
48
-
-
78649551872
-
Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values
-
I.R. White, and J.B. Carlin Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values Stat. Med. 29 2010 2920 2931
-
(2010)
Stat. Med.
, vol.29
, pp. 2920-2931
-
-
White, I.R.1
Carlin, J.B.2
|