메뉴 건너뛰기




Volumn 311, Issue , 2015, Pages 163-181

Tree-based prediction on incomplete data using imputation or surrogate decisions

Author keywords

Conditional inference tree; Missing data; Multiple imputation; Prediction; Surrogate decision

Indexed keywords

CLASSIFICATION (OF INFORMATION); FORECASTING;

EID: 84927722807     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2015.03.018     Document Type: Article
Times cited : (63)

References (48)
  • 2
    • 0242498488 scopus 로고    scopus 로고
    • An analysis of four missing data treatment methods for supervised learning
    • G.E. Batista, M.C. Monard, An analysis of four missing data treatment methods for supervised learning, in: Applied Artificial Intelligence, vol. 17, pp. 519-533.
    • Applied Artificial Intelligence , vol.17 , pp. 519-533
    • Batista, G.E.1    Monard, M.C.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 1996 123 140
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman Arcing classifiers Ann. Statist. 26 1998 801 849
    • (1998) Ann. Statist. , vol.26 , pp. 801-849
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Mach. Learn. 45 2001 5 32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 7
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • P. Bühlmann, and B. Yu Analyzing bagging Ann. Stat. 30 2002 927 961
    • (2002) Ann. Stat. , vol.30 , pp. 927-961
    • Bühlmann, P.1    Yu, B.2
  • 8
    • 77958547578 scopus 로고    scopus 로고
    • Multiple imputation for missing data via sequential regression trees
    • L.F. Burgette, and J.P. Reiter Multiple imputation for missing data via sequential regression trees Am. J. Epidemiol. 172 2010 1070 1076
    • (2010) Am. J. Epidemiol. , vol.172 , pp. 1070-1076
    • Burgette, L.F.1    Reiter, J.P.2
  • 9
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A.P. Dempster, N.M. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm J. Roy. Stat. Soc. B 39 1977 1 38
    • (1977) J. Roy. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 10
    • 0004053609 scopus 로고
    • Machine learning bias, statistical bias, and statistical variance of decision tree algorithms
    • T.G. Dietterich, and E.B. Kong Machine learning bias, statistical bias, and statistical variance of decision tree algorithms Mach. Learn. 255 1995 0 13
    • (1995) Mach. Learn. , vol.255 , pp. 0-13
    • Dietterich, T.G.1    Kong, E.B.2
  • 11
    • 84888869357 scopus 로고    scopus 로고
    • Recursive partitioning for missing data imputation in the presence of interaction effects
    • L.L. Doove, S. Van Buuren, and E. Dusseldorp Recursive partitioning for missing data imputation in the presence of interaction effects Comput. Stat. Data Anal. 72 2014 92 104
    • (2014) Comput. Stat. Data Anal. , vol.72 , pp. 92-104
    • Doove, L.L.1    Van Buuren, S.2    Dusseldorp, E.3
  • 12
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • B. Efron Bootstrap methods: another look at the jackknife Ann. Stat. 7 1979 1 26
    • (1979) Ann. Stat. , vol.7 , pp. 1-26
    • Efron, B.1
  • 15
    • 84857652587 scopus 로고    scopus 로고
    • Recursive partitioning on incomplete data using surrogate decisions and multiple imputation
    • A. Hapfelmeier, T. Hothorn, and K. Ulm Recursive partitioning on incomplete data using surrogate decisions and multiple imputation Comput. Stat. Data Anal. 56 2012 1552 1565
    • (2012) Comput. Stat. Data Anal. , vol.56 , pp. 1552-1565
    • Hapfelmeier, A.1    Hothorn, T.2    Ulm, K.3
  • 16
    • 84904347710 scopus 로고    scopus 로고
    • Variable selection by Random Forests using data with missing values
    • A. Hapfelmeier, and K. Ulm Variable selection by Random Forests using data with missing values Comput. Stat. Data Anal. 80 2014 129 139
    • (2014) Comput. Stat. Data Anal. , vol.80 , pp. 129-139
    • Hapfelmeier, A.1    Ulm, K.2
  • 19
    • 33846873244 scopus 로고    scopus 로고
    • Much ado about nothing: A comparison of missing data methods and software to fit incomplete data regression models
    • N.J. Horton, and K.P. Kleinman Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models Am. Stat. 61 2007 79 90
    • (2007) Am. Stat. , vol.61 , pp. 79-90
    • Horton, N.J.1    Kleinman, K.P.2
  • 21
    • 33749677657 scopus 로고    scopus 로고
    • Unbiased recursive partitioning: A conditional inference framework
    • T. Hothorn, K. Hornik, and A. Zeileis Unbiased recursive partitioning: a conditional inference framework J. Comput. Graph. Stat. 15 2006 651 674
    • (2006) J. Comput. Graph. Stat. , vol.15 , pp. 651-674
    • Hothorn, T.1    Hornik, K.2    Zeileis, A.3
  • 23
    • 49449091081 scopus 로고    scopus 로고
    • Use of multiple imputation in the epidemiologic literature
    • M.A. Klebanoff, and S.R. Cole Use of multiple imputation in the epidemiologic literature Am. J. Epidemiol. 168 2008 355 357
    • (2008) Am. J. Epidemiol. , vol.168 , pp. 355-357
    • Klebanoff, M.A.1    Cole, S.R.2
  • 25
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • A. Liaw, and M. Wiener Classification and regression by randomForest R News 2 2002 18 22
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 28
    • 84888873861 scopus 로고    scopus 로고
    • Stability and structure of CART and SPAN search generated data partitions for the analysis of low birth weight
    • R.J. Marshall, and P. Kitsantas Stability and structure of CART and SPAN search generated data partitions for the analysis of low birth weight J. Data Sci. 10 2012 61 73
    • (2012) J. Data Sci. , vol.10 , pp. 61-73
    • Marshall, R.J.1    Kitsantas, P.2
  • 29
    • 0013321815 scopus 로고    scopus 로고
    • Ipred: Improved predictors
    • A. Peters, T. Hothorn, and B. Lausen ipred: Improved predictors R News 2 2002 33 36
    • (2002) R News , vol.2 , pp. 33-36
    • Peters, A.1    Hothorn, T.2    Lausen, B.3
  • 33
    • 0000135972 scopus 로고
    • The Bayesian bootstrap
    • D.B. Rubin The Bayesian bootstrap Ann. Stat. 9 1981 130 134
    • (1981) Ann. Stat. , vol.9 , pp. 130-134
    • Rubin, D.B.1
  • 35
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • D.B. Rubin Multiple imputation after 18+ years J. Am. Stat. Assoc. 91 1996 473 489
    • (1996) J. Am. Stat. Assoc. , vol.91 , pp. 473-489
    • Rubin, D.B.1
  • 36
    • 34547696888 scopus 로고    scopus 로고
    • Handling missing values when applying classification models
    • M. Saar-Tsechansky, and F. Provost Handling missing values when applying classification models J. Mach. Learn. Res. 8 2007 1625 1657
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1625-1657
    • Saar-Tsechansky, M.1    Provost, F.2
  • 38
    • 84895894249 scopus 로고    scopus 로고
    • Comparison of random forest and parametric imputation models for imputing missing data using MICE: A CALIBER study
    • A.D. Shah, J.W. Bartlett, J. Carpenter, O. Nicholas, and H. Hemingway Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study Am. J. Epidemiol. 179 2014 764 774
    • (2014) Am. J. Epidemiol. , vol.179 , pp. 764-774
    • Shah, A.D.1    Bartlett, J.W.2    Carpenter, J.3    Nicholas, O.4    Hemingway, H.5
  • 39
    • 84855177476 scopus 로고    scopus 로고
    • Missforest-Non-parametric missing value imputation for mixed-type data
    • D.J. Stekhoven, and P. Bühlmann Missforest-Non-parametric missing value imputation for mixed-type data Bioinformatics 28 2012 112 118
    • (2012) Bioinformatics , vol.28 , pp. 112-118
    • Stekhoven, D.J.1    Bühlmann, P.2
  • 40
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • M.A. Tanner, and W.H. Wong The calculation of posterior distributions by data augmentation J. Am. Stat. Assoc. 82 1987 528 540
    • (1987) J. Am. Stat. Assoc. , vol.82 , pp. 528-540
    • Tanner, M.A.1    Wong, W.H.2
  • 42
    • 84927734327 scopus 로고    scopus 로고
    • Bias, variance and prediction error for classification rules
    • R. Tibshirani Bias, variance and prediction error for classification rules Monogr. Soc. Res. Child Dev. 79 1996 1 14
    • (1996) Monogr. Soc. Res. Child Dev. , vol.79 , pp. 1-14
    • Tibshirani, R.1
  • 47
    • 79953732420 scopus 로고    scopus 로고
    • MICE: Multivariate imputation by chained equations in R
    • S. Van Buuren, and K. Groothuis-Oudshoorn MICE: multivariate imputation by chained equations in R J. Stat. Software 45 2011 1 67
    • (2011) J. Stat. Software , vol.45 , pp. 1-67
    • Van Buuren, S.1    Groothuis-Oudshoorn, K.2
  • 48
    • 78649551872 scopus 로고    scopus 로고
    • Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values
    • I.R. White, and J.B. Carlin Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values Stat. Med. 29 2010 2920 2931
    • (2010) Stat. Med. , vol.29 , pp. 2920-2931
    • White, I.R.1    Carlin, J.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.