메뉴 건너뛰기




Volumn 9, Issue 3, 2017, Pages

Transferring pre-trained deep CNNs for remote scene classification with general features learned from linear PCA network

Author keywords

Convolutional neural network; Deep learning; General feature; Principle component analysis; Remote scene classification

Indexed keywords

CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; IMAGE RECONSTRUCTION; LINEAR NETWORKS; NETWORK ARCHITECTURE; NEURAL NETWORKS; PRINCIPAL COMPONENT ANALYSIS;

EID: 85019378344     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9030225     Document Type: Article
Times cited : (59)

References (61)
  • 1
    • 84962609582 scopus 로고    scopus 로고
    • Deep hierarchical representation and segmentation of high resolution remote sensing images
    • In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 26-31 July 2015
    • Wang, J.; Qin, Q.; Li, Z.; Ye, X.; Wang, J.; Yang, X.; Qin, X. Deep hierarchical representation and segmentation of high resolution remote sensing images. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 26-31 July 2015; pp. 4320-4323.
    • Wang, J.1    Qin, Q.2    Li, Z.3    Ye, X.4    Wang, J.5    Yang, X.6    Qin, X.7
  • 4
    • 84940766118 scopus 로고    scopus 로고
    • High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder
    • Zhou, W.; Shao, Z.; Diao, C.; Cheng, Q. High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder. Remote Sens. Lett. 2015, 6, 775-783.
    • (2015) Remote Sens. Lett. , vol.6 , pp. 775-783
    • Zhou, W.1    Shao, Z.2    Diao, C.3    Cheng, Q.4
  • 5
    • 84890425279 scopus 로고    scopus 로고
    • Unsupervised feature learning for aerial scene classification
    • Cheriyadat, A.M. Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 439-451.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , pp. 439-451
    • Cheriyadat, A.M.1
  • 6
    • 84897445480 scopus 로고    scopus 로고
    • Spatial and temporal classification of synthetic satellite imagery: Land cover mapping and accuracy validation
    • Xu, Y.; Huang, B. Spatial and temporal classification of synthetic satellite imagery: Land cover mapping and accuracy validation. Geo-Spat. Inf. Sci. 2014, 17, 1-7.
    • (2014) Geo-Spat. Inf. Sci. , vol.17 , pp. 1-7
    • Xu, Y.1    Huang, B.2
  • 7
    • 85027931914 scopus 로고    scopus 로고
    • Learning high-level features for satellite image classification with limited labeled samples
    • Yang, W.; Yin, X.; Xia, G.S. Learning high-level features for satellite image classification with limited labeled samples. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4472-4482.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , pp. 4472-4482
    • Yang, W.1    Yin, X.2    Xia, G.S.3
  • 8
    • 84886932505 scopus 로고    scopus 로고
    • Extreme value theory-based calibration for the fusion of multiple features in high-resolution satellite scene classification
    • Shao,W.; Yang,W.; Xia, G.S. Extreme value theory-based calibration for the fusion of multiple features in high-resolution satellite scene classification. Int. J. Remote Sens. 2013, 34, 8588-8602.
    • (2013) Int. J. Remote Sens. , vol.34 , pp. 8588-8602
    • Shao, W.1    Yang, W.2    Xia, G.S.3
  • 9
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Romero, A.; Gatta, C.; Camps-Valls, G. Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1349-1362.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 11
    • 85028163050 scopus 로고    scopus 로고
    • Land-use scene classification using a concentric circle-structured multiscale bag-of-visual-words model
    • Zhao, L.J.; Tang, P.; Huo, L.Z. Land-use scene classification using a concentric circle-structured multiscale bag-of-visual-words model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4620-4631.
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.7 , pp. 4620-4631
    • Zhao, L.J.1    Tang, P.2    Huo, L.Z.3
  • 12
    • 84908027761 scopus 로고    scopus 로고
    • Pyramid of spatial relatons for scene-level land use classification
    • Chen, S.; Tian, Y.L. Pyramid of spatial relatons for scene-level land use classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1947-1957.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , pp. 1947-1957
    • Chen, S.1    Tian, Y.L.2
  • 14
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278-2324.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 19
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • Hu,W.; Huang, Y.;Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015.
    • (2015) J. Sens
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 24
    • 85003881350 scopus 로고    scopus 로고
    • How could a subcellular image, or a painting by Van Gogh, be similar to a great white shark or to a pizza? Pattern Recognit
    • Nanni, L.; Ghidoni, S. How could a subcellular image, or a painting by Van Gogh, be similar to a great white shark or to a pizza? Pattern Recognit. Lett. 2017, 85, 1-7.
    • (2017) Lett. , vol.85 , pp. 1-7
    • Nanni, L.1    Ghidoni, S.2
  • 26
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 2015, 7, 14680-14707.
    • (2015) Remote Sens. , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.S.2    Hu, J.3    Zhang, L.4
  • 27
    • 84959533227 scopus 로고    scopus 로고
    • PCANet: A simple deep learning baseline for image classification? IEEE Trans
    • Chan, T.H.; Jia, K.; Gao, S.; Lu, J.; Zeng, Z.; Ma, Y. PCANet: A simple deep learning baseline for image classification? IEEE Trans. Image Process. 2015, 24, 5017-5032.
    • (2015) Image Process. , vol.24 , pp. 5017-5032
    • Chan, T.H.1    Jia, K.2    Gao, S.3    Lu, J.4    Zeng, Z.5    Ma, Y.6
  • 30
    • 70449311374 scopus 로고
    • Receptive fields of single neurones in the cat's striate cortex
    • Hubel, D.H.;Wiesel, T.N. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 1959, 148, 574-591.
    • (1959) J. Physiol. , vol.148 , pp. 574-591
    • Hubel D.H.1    Wiesel, T.N.2
  • 31
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36, 193-202.
    • (1980) Biol. Cybern. , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 34
    • 84959197642 scopus 로고    scopus 로고
    • In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 July
    • He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 July 2015; pp. 5353-5360.
    • (2015) Convolutional neural networks at constrained time cost , pp. 5353-5360
    • He, K.1    Sun, J.2
  • 38
    • 78650593938 scopus 로고    scopus 로고
    • In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2-5 November
    • Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2-5 November 2010; pp. 270-279.
    • (2010) Bag-of-visual-words and spatial extensions for land-use classification , pp. 270-279
    • Yang, Y.1    Newsam, S.2
  • 39
    • 84959213675 scopus 로고    scopus 로고
    • In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7-12 July
    • Mahendran, A.; Vedaldi, A. Understanding deep image representations by inverting them. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7-12 July 2015; pp. 5188-5196.
    • (2015) Understanding deep image representations by inverting them , pp. 5188-5196
    • Mahendran, A.1    Vedaldi, A.2
  • 40
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579-2605.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2579-2605
    • Maaten, L.1    Hinton, G.2
  • 41
    • 84919775831 scopus 로고    scopus 로고
    • Accelerating t-SNE using tree-based algorithms
    • Van der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 2014, 15, 3221-3245.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 3221-3245
    • Van der Maaten, L.1
  • 42
    • 84863038460 scopus 로고    scopus 로고
    • In Proceedings of the IEEE 2011 International Conference on Computer Vision, Providence, RI, USA, 20-25 June
    • Yang, Y.; Newsam, S. Spatial pyramid co-occurrence for image classification. In Proceedings of the IEEE 2011 International Conference on Computer Vision, Providence, RI, USA, 20-25 June 2011; pp. 1465-1472.
    • (2011) Spatial pyramid co-occurrence for image classification , pp. 1465-1472
    • Yang, Y.1    Newsam, S.2
  • 43
    • 84867844037 scopus 로고    scopus 로고
    • Randomized spatial partition for scene recognition
    • In Computer Vision-ECCV 2012 Springer Berlin/Heidelberg, Germany
    • Jiang, Y.; Yuan, J.; Yu, G. Randomized spatial partition for scene recognition. In Computer Vision-ECCV 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 730-743.
    • (2012) , pp. 730-743
    • Jiang, Y.1    Yuan, J.2    Yu, G.3
  • 44
    • 84892600603 scopus 로고    scopus 로고
    • mCENTRIST: A multi-channel feature generation mechanism for scene categorization
    • Xiao, Y.;Wu, J.; Yuan, J. mCENTRIST: A multi-channel feature generation mechanism for scene categorization. IEEE Trans. Image Process. 2014, 23, 823-836.
    • (2014) IEEE Trans. Image Process. , vol.23 , pp. 823-836
    • Xiao Y.1    Wu, J.2    Yuan, J.3
  • 45
    • 84953840331 scopus 로고    scopus 로고
    • Block-based semantic classification of high-resolution multispectral aerial images
    • Avramovíc, A.; Risojevíc, V. Block-based semantic classification of high-resolution multispectral aerial images. Signal Image Video Process. 2016, 10, 75-84.
    • (2016) Signal Image Video Process. , vol.10 , pp. 75-84
    • Avramovíc, A.1    Risojevíc, V.2
  • 46
    • 84909977972 scopus 로고    scopus 로고
    • Multi-class geospatial object detection and geographic image classification based on collection of part detectors
    • Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119-132.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.98 , pp. 119-132
    • Cheng, G.1    Han, J.2    Zhou, P.3    Guo, L.4
  • 47
    • 84911397147 scopus 로고    scopus 로고
    • In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23-28 June
    • Kobayashi, T. Dirichlet-based histogram feature transform for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23-28 June 2014; pp. 3278-3285.
    • (2014) Dirichlet-based histogram feature transform for image classification , pp. 3278-3285
    • Kobayashi, T.1
  • 48
    • 84927139472 scopus 로고    scopus 로고
    • Learning LBP structure by maximizing the conditional mutual information
    • Ren, J.; Jiang, X.; Yuan, J. Learning LBP structure by maximizing the conditional mutual information. Pattern Recognit. 2015, 48, 3180-3190.
    • (2015) Pattern Recognit. , vol.48 , pp. 3180-3190
    • Ren, J.1    Jiang, X.2    Yuan, J.3
  • 49
    • 85027929099 scopus 로고    scopus 로고
    • Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification
    • Hu, F.; Xia, G.S.; Wang, Z.; Huang, X.; Zhang, L.; Sun, H. Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2015-2030.
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.8 , pp. 2015-2030
    • Hu, F.1    Xia, G.S.2    Wang, Z.3    Huang, X.4    Zhang, L.5    Sun, H.6
  • 50
    • 85028158057 scopus 로고    scopus 로고
    • Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images
    • Cheng, G.; Han, J.; Guo, L.; Liu, Z.; Bu, S.; Ren, J. Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4238-4249.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , pp. 4238-4249
    • Cheng, G.1    Han, J.2    Guo, L.3    Liu, Z.4    Bu, S.5    Ren, J.6
  • 52
    • 85016323303 scopus 로고    scopus 로고
    • Fast binary coding for the scene classification of high-resolution remote sensing imagery
    • Hu, F.; Xia, G.S.; Hu, J.; Zhong, Y.; Xu, K. Fast binary coding for the scene classification of high-resolution remote sensing imagery. Remote Sens. 2016, 8, 555.
    • (2016) Remote Sens. , vol.8 , pp. 555
    • Hu, F.1    Xia, G.S.2    Hu, J.3    Zhong, Y.4    Xu, K.5
  • 53
    • 84967166415 scopus 로고    scopus 로고
    • Large patch convolutional neural networks for the scene classification of high spatial resolution imagery
    • Zhong, Y.; Fei, F.; Zhang, L. Large patch convolutional neural networks for the scene classification of high spatial resolution imagery. J. Appl. Remote Sens. 2016, 10, 025006.
    • (2016) J. Appl. Remote Sens. , vol.10 , pp. 025006
    • Zhong, Y.1    Fei, F.2    Zhang, L.3
  • 55
    • 84962585158 scopus 로고    scopus 로고
    • A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery
    • Zhao, B.; Zhong, Y.; Zhang, L. A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2016, 116, 73-85.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.116 , pp. 73-85
    • Zhao, B.1    Zhong, Y.2    Zhang, L.3
  • 56
    • 84962541771 scopus 로고    scopus 로고
    • A Color-Texture-structure descriptor for high-resolution satellite image classification
    • Yu, H.; Yang,W.; Xia, G.S.; Liu, G. A Color-Texture-structure descriptor for high-resolution satellite image classification. Remote Sens. 2016, 8, 259.
    • (2016) Remote Sens. , vol.8 , pp. 259
    • Yu, H.1    Yang, W.2    Xia, G.S.3    Liu, G.4
  • 58
    • 84959386343 scopus 로고    scopus 로고
    • Scene classification using local and global features with collaborative representation fusion
    • Zou, J.; Li, W.; Chen, C.; Du, Q. Scene classification using local and global features with collaborative representation fusion. Inf. Sci. 2016, 348, 209-226.
    • (2016) Inf. Sci. , vol.348 , pp. 209-226
    • Zou, J.1    Li, W.2    Chen, C.3    Du, Q.4
  • 61
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904-1916.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , pp. 1904-1916
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.