메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages 347-359

Superpixel-Based Active Learning and Online Feature Importance Learning for Hyperspectral Image Analysis

Author keywords

Active learning (AL); hyperspectral; superpixel

Indexed keywords

ALUMINUM; ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); HYPERSPECTRAL IMAGING; IMAGE ANALYSIS; IMAGE RECONSTRUCTION; MAPPING; NETWORK FUNCTION VIRTUALIZATION; PIXELS; REMOTE SENSING; SPECTROSCOPY;

EID: 85019346966     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2016.2609404     Document Type: Article
Times cited : (39)

References (41)
  • 1
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • Univ.Wisconsin, Madison, WI, USA
    • B. Settles, "Active learning literature survey," Univ.Wisconsin, Madison, WI, USA, Comput. Sci. Tech. Rep. 1648, 2010.
    • (2010) Comput. Sci. Tech. Rep. , vol.1648
    • Settles, B.1
  • 2
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • Mar.
    • B. Demir, C. Persello, and L. Bruzzone, "Batch-mode active-learning methods for the interactive classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 1014-1031, Mar. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 3
    • 84860318734 scopus 로고    scopus 로고
    • View generation for multiview maximum disagreement based active learning for hyperspectral image classification
    • May
    • W. Di and M. M. Crawford, "View generation for multiview maximum disagreement based active learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1942-1954, May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1942-1954
    • Di, W.1    Crawford, M.M.2
  • 4
    • 84870901798 scopus 로고    scopus 로고
    • Interactive domain adaptation for the classification of remote sensing images using active learning
    • Jul.
    • C. Persello, "Interactive domain adaptation for the classification of remote sensing images using active learning," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 4, pp. 736-740, Jul. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.4 , pp. 736-740
    • Persello, C.1
  • 5
    • 84920949749 scopus 로고    scopus 로고
    • Collaborative active and semisupervised learning for hyperspectral remote sensing image classification
    • May
    • L. Wan, K. Tang, M. Li, Y. Zhong, and A. Qin, "Collaborative active and semisupervised learning for hyperspectral remote sensing image classification," IEEE Trans.Geosci. Remote Sens., vol. 53, no. 5, pp. 2384-2396, May 2015.
    • (2015) IEEE Trans.Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2384-2396
    • Wan, L.1    Tang, K.2    Li, M.3    Zhong, Y.4    Qin, A.5
  • 6
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Jun.
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Top. Signal Process., vol. 5, no. 3, pp. 606-617, Jun. 2011.
    • (2011) IEEE J. Sel. Top. Signal Process. , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 7
    • 84874518998 scopus 로고    scopus 로고
    • Active learning: Any value for classification of remotely sensed data?
    • Mar.
    • M. M. Crawford, D. Tuia, and H. L. Yang, "Active learning: Any value for classification of remotely sensed data?" Proc. IEEE, vol. 101, no. 3, pp. 593-608, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 593-608
    • Crawford, M.M.1    Tuia, D.2    Yang, H.L.3
  • 9
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • Feb.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 844-856, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 10
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new Bayesian approach with active learning
    • Oct.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Hyperspectral image segmentation using a new Bayesian approach with active learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3947-3960, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 11
    • 84892437309 scopus 로고    scopus 로고
    • SVM active learning approach for image classification using spatial information
    • Apr.
    • E. Pasolli, F. Melgani, D. Tuia, F. Pacifici, and W. J. Emery, "SVM active learning approach for image classification using spatial information," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 4, pp. 2217-2233, Apr. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.4 , pp. 2217-2233
    • Pasolli, E.1    Melgani, F.2    Tuia, D.3    Pacifici, F.4    Emery, W.J.5
  • 12
    • 84898598578 scopus 로고    scopus 로고
    • Active learning in the spatial domain for remote sensing image classification
    • May
    • A. Stumpf, N. Lachiche, J.-P. Malet, N. Kerle, and A. Puissant, "Active learning in the spatial domain for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2492-2507, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2492-2507
    • Stumpf, A.1    Lachiche, N.2    Malet, J.-P.3    Kerle, N.4    Puissant, A.5
  • 13
  • 15
    • 84901851364 scopus 로고    scopus 로고
    • Cost-sensitive active learning with lookahead: Optimizing field surveys for remote sensing data classification
    • Oct.
    • C. Persello, A. Boularias, M. Dalponte, T. Gobakken, E. Naesset, and B. Scholkopf, "Cost-sensitive active learning with lookahead: Optimizing field surveys for remote sensing data classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6652-6664, Oct. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.10 , pp. 6652-6664
    • Persello, C.1    Boularias, A.2    Dalponte, M.3    Gobakken, T.4    Naesset, E.5    Scholkopf, B.6
  • 16
    • 84890989678 scopus 로고    scopus 로고
    • Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method
    • Feb.
    • B. Demir, L. Minello, and L. Bruzzone, "Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1272-1284, Feb. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.2 , pp. 1272-1284
    • Demir, B.1    Minello, L.2    Bruzzone, L.3
  • 17
    • 85027957205 scopus 로고    scopus 로고
    • Superpixels for spatially reinforced Bayesian classification of hyperspectral images
    • May
    • T. Priya, S. Prasad, and H. Wu, "Superpixels for spatially reinforced Bayesian classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 5, pp. 1071-1075, May 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.5 , pp. 1071-1075
    • Priya, T.1    Prasad, S.2    Wu, H.3
  • 18
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • May
    • D. Comaniciu and P.Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603-619, May 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 19
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • P. F. Felzenszwalb and D. P. Huttenlocher, "Efficient graph-based image segmentation," Int. J. Comput. Vis., vol. 59, no. 2, pp. 167-181, 2004.
    • (2004) Int. J. Comput. Vis. , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 20
    • 0026172104 scopus 로고
    • Watersheds in digital spaces: An efficient algorithm based on immersion simulations
    • Jun.
    • L. Vincent and P. Soille, "Watersheds in digital spaces: An efficient algorithm based on immersion simulations," IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 6, pp. 583-598, Jun. 1991.
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell. , vol.13 , Issue.6 , pp. 583-598
    • Vincent, L.1    Soille, P.2
  • 21
    • 84890385880 scopus 로고    scopus 로고
    • Entropy-rate clustering: Cluster analysis via maximizing a submodular function subject to a matroid constraint
    • Jan.
    • M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, "Entropy-rate clustering: Cluster analysis via maximizing a submodular function subject to a matroid constraint," IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 1, pp. 99-112, Jan. 2014.
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.36 , Issue.1 , pp. 99-112
    • Liu, M.-Y.1    Tuzel, O.2    Ramalingam, S.3    Chellappa, R.4
  • 23
    • 78149315825 scopus 로고    scopus 로고
    • Superpixels and supervoxels in an energy optimization framework
    • O.Veksler,Y. Boykov, and P. Mehrani, "Superpixels and supervoxels in an energy optimization framework," in Proc. Eur. Conf. Comput. Vis. 2010, pp. 211-224.
    • (2010) Proc. Eur. Conf. Comput. Vis. , pp. 211-224
    • Boykov OVekslerY1    Mehrani, P.2
  • 24
  • 25
    • 84894488857 scopus 로고    scopus 로고
    • A framework for land cover classification using discrete return lidar data: Adopting pseudo-waveform and hierarchical segmentation
    • Feb.
    • J. Jung, E. Pasolli, S. Prasad, J. C. Tilton, and M. M. Crawford, "A framework for land cover classification using discrete return lidar data: Adopting pseudo-waveform and hierarchical segmentation," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 2, pp. 491-502, Feb. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.2 , pp. 491-502
    • Jung, J.1    Pasolli, E.2    Prasad, S.3    Tilton, J.C.4    Crawford, M.M.5
  • 26
    • 84962585917 scopus 로고    scopus 로고
    • An ensemble active learning approach for spectral-spatial classification of hyperspectral images
    • Z. Zhang and M. M. Crawford, "An ensemble active learning approach for spectral-spatial classification of hyperspectral images," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2015, pp. 4963-4966.
    • (2015) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 4963-4966
    • Zhang, Z.1    Crawford, M.M.2
  • 27
    • 53349127642 scopus 로고    scopus 로고
    • Decision fusionwith confidence-basedweight assignment for hyperspectral target recognition
    • May
    • S. Prasad and L.M. Bruce, "Decision fusionwith confidence-basedweight assignment for hyperspectral target recognition," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1448-1456, May 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.5 , pp. 1448-1456
    • Prasad, S.1    Bruce, L.M.2
  • 28
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Aug.
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 29
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Mar.
    • J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 30
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using watershed transformation," Pattern Recognit., vol. 43, no. 7, pp. 2367-2379, 2010.
    • (2010) Pattern Recognit. , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 31
    • 80052335044 scopus 로고    scopus 로고
    • Adaptive Markov random field approach for classification of hyperspectral imagery
    • Sep.
    • B. Zhang, S. Li, X. Jia, L. Gao, and M. Peng, "Adaptive Markov random field approach for classification of hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 5, pp. 973-977, Sep. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.5 , pp. 973-977
    • Zhang, B.1    Li, S.2    Jia, X.3    Gao, L.4    Peng, M.5
  • 32
    • 10044219654 scopus 로고    scopus 로고
    • Active learning to recognize multiple types of plankton
    • T. Luo et al., "Active learning to recognize multiple types of plankton," in Proc. Int. Conf. Pattern Recognit., 2005, pp. 478-481.
    • (2005) Proc. Int. Conf. Pattern Recognit. , pp. 478-481
    • Luo, T.1
  • 33
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • Mar.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809-823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 34
    • 85027924180 scopus 로고    scopus 로고
    • A subspacebased multinomial logistic regression for hyperspectral image classification
    • Dec.
    • M. Khodadadzadeh, J. Li, A. Plaza, and J.M. Bioucas-Dias, "A subspacebased multinomial logistic regression for hyperspectral image classification," IEEE J. Sel. Topics Signal Process., vol. 8, no. 6, pp. 2971-2983, Dec. 2015.
    • (2015) IEEE J. Sel. Topics Signal Process. , vol.8 , Issue.6 , pp. 2971-2983
    • Khodadadzadeh, M.1    Li, J.2    Plaza, A.3    Bioucas-Dias, J.M.4
  • 35
    • 0000095809 scopus 로고
    • An analysis of approximations for maximizing submodular set functions-I
    • G. L. Nemhauser, L. Wolsey, and M. L. Fisher, "An analysis of approximations for maximizing submodular set functions-I," Math. Program., vol. 14, no. 1, pp. 265-294, 1978.
    • (1978) Math. Program. , vol.14 , Issue.1 , pp. 265-294
    • Nemhauser, G.L.1    Wolsey, L.2    Fisher, M.L.3
  • 37
  • 38
    • 0036811755 scopus 로고    scopus 로고
    • Comparison of texture features based on Gabor filters
    • Oct.
    • S. E. Grigorescu, N. Petkov, and P. Kruizinga, "Comparison of texture features based on Gabor filters," IEEE Trans. Image Process., vol. 11, no. 10, pp. 1160-1167, Oct. 2002.
    • (2002) IEEE Trans. Image Process. , vol.11 , Issue.10 , pp. 1160-1167
    • Grigorescu, S.E.1    Petkov, N.2    Kruizinga, P.3
  • 40
    • 85016972555 scopus 로고    scopus 로고
    • Dimension reduction of hyperspectral images for classification applications
    • P.-H. Hsu, Y.-H. Tseng, and P. Gong, "Dimension reduction of hyperspectral images for classification applications," Geograph. Inf. Sci., vol. 8, no. 1, pp. 1-8, 2002.
    • (2002) Geograph. Inf. Sci. , vol.8 , Issue.1 , pp. 1-8
    • Hsu, P.-H.1    Tseng, Y.-H.2    Gong, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.