메뉴 건너뛰기




Volumn 23, Issue 2, 2010, Pages 239-243

Temporal-Kernel Recurrent Neural Networks

Author keywords

Backpropagation through time; Fixed points; Long term dependencies; Recurrent Neural Networks; Supervised learning

Indexed keywords

BACK-PROPAGATION THROUGH TIME; CONNECTIONIST MODELS; FIXED POINTS; HIDDEN UNITS; INPUT STRING; LONG-TERM DEPENDENCIES; SEQUENTIAL PROBLEMS; SERIAL RECALL; SHORT TERM MEMORY; STABLE STATE;

EID: 73949127981     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2009.10.009     Document Type: Article
Times cited : (33)

References (23)
  • 1
    • 0029557159 scopus 로고
    • The Hebbian paradigm reintegrated: Local reverberations as internal representations
    • Amit D. The Hebbian paradigm reintegrated: Local reverberations as internal representations. Behavioral and Brain Sciences 18 4 (1995) 617-657
    • (1995) Behavioral and Brain Sciences , vol.18 , Issue.4 , pp. 617-657
    • Amit, D.1
  • 2
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio Y., Simard P., and Frasconi P. Learning long-term dependencies with gradient descent is difficult. Neural Networks, IEEE Transactions on 5 2 (1994) 157-166
    • (1994) Neural Networks, IEEE Transactions on , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 3
    • 33744552729 scopus 로고    scopus 로고
    • Short-term memory for serial order: A recurrent neural network model
    • Botvinick M., and Plaut D. Short-term memory for serial order: A recurrent neural network model. Psychological Review 113 2 (2006) 201-233
    • (2006) Psychological Review , vol.113 , Issue.2 , pp. 201-233
    • Botvinick, M.1    Plaut, D.2
  • 4
    • 0031762840 scopus 로고    scopus 로고
    • A model of visuospatial working memory in prefrontal cortex: Recurrent network and cellular bistability
    • Camperi M., and Wang X. A model of visuospatial working memory in prefrontal cortex: Recurrent network and cellular bistability. Journal of Computational Neuroscience 5 4 (1998) 383-405
    • (1998) Journal of Computational Neuroscience , vol.5 , Issue.4 , pp. 383-405
    • Camperi, M.1    Wang, X.2
  • 5
    • 0026895542 scopus 로고
    • Gamma model-A new neural model for temporal processing
    • De Vries B., and Principe J. Gamma model-A new neural model for temporal processing. Neural Networks 5 4 (1992) 565-576
    • (1992) Neural Networks , vol.5 , Issue.4 , pp. 565-576
    • De Vries, B.1    Principe, J.2
  • 6
    • 0037707290 scopus 로고    scopus 로고
    • Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks?
    • Feldkamp L., Prokhorov D., and Feldkamp T. Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks?. Neural Networks 16 5-6 (2003) 683-689
    • (2003) Neural Networks , vol.16 , Issue.5-6 , pp. 683-689
    • Feldkamp, L.1    Prokhorov, D.2    Feldkamp, T.3
  • 7
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • Gers F., Schmidhuber J., and Cummins F. Learning to forget: Continual prediction with LSTM. Neural Computation 12 10 (2000) 2451-2471
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2451-2471
    • Gers, F.1    Schmidhuber, J.2    Cummins, F.3
  • 12
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • Jaeger H., and Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304 5667 (2004) 78-80
    • (2004) Science , vol.304 , Issue.5667 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 17
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D., Hinton G., and Williams R. Learning representations by back-propagating errors. Nature 323 6088 (1986) 533-536
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 20
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Werbos P. Backpropagation through time: What it does and how to do it. Proceedings of the IEEE 78 10 (1990) 1550-1560
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.1
  • 21
    • 2342592517 scopus 로고    scopus 로고
    • Short-term memory in orthogonal neural networks
    • White O., Lee D., and Sompolinsky H. Short-term memory in orthogonal neural networks. Physical Review Letters 92 14 (2004) 148102
    • (2004) Physical Review Letters , vol.92 , Issue.14 , pp. 148102
    • White, O.1    Lee, D.2    Sompolinsky, H.3
  • 22
    • 85132302281 scopus 로고
    • Training recurrent networks using the extended Kalman filter. In Neural networks, 1
    • nbsp;
    • Williams, R. (1992). Training recurrent networks using the extended Kalman filter. In Neural networks, 1, 1992. IJCNN. International joint conference on, Vol. 4
    • (1992) IJCNN. International joint conference on , vol.4 , pp. 1992
    • Williams, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.