메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages 3881-3889

A clockwork RNN

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CHARACTER RECOGNITION; CLOCKS; LEARNING SYSTEMS; RECURRENT NEURAL NETWORKS;

EID: 84919782249     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (101)

References (39)
  • 1
    • 0004262806 scopus 로고
    • Finding structure in time
    • Center for Research in Language, University of California, San Diego
    • Elman, J. L. Finding structure in time. CRL Technical Report 8801, Center for Research in Language, University of California, San Diego, 1988.
    • (1988) CRL Technical Report 8801
    • Elman, J.L.1
  • 5
    • 71249112130 scopus 로고    scopus 로고
    • Offline handwriting recognition with multidimensional recurrent neural networks
    • MIT Press, Cambridge, MA
    • Graves, A. and Schmidhuber, J. Offline handwriting recognition with multidimensional recurrent neural networks. In Advances in Neural Information Processing Systems 21, pp. 545-552. MIT Press, Cambridge, MA, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 545-552
    • Graves, A.1    Schmidhuber, J.2
  • 6
    • 31944444962 scopus 로고    scopus 로고
    • Rapid retraining on speech data with LSTM recurrent networks
    • IDSIA
    • Graves, A., Beringer, N., and Schmidhuber, J. Rapid retraining on speech data with LSTM recurrent networks. Technical Report IDSIA-09-05, IDSIA, 2005. URL http://www.idsia.ch/idsiareport/IDSIA-09-05.pdf.
    • (2005) Technical Report IDSIA-09-05
    • Graves, A.1    Beringer, N.2    Schmidhuber, J.3
  • 9
    • 84890543083 scopus 로고    scopus 로고
    • Speech recognition with deep recurrent neural networks
    • IEEE
    • Graves, A., Mohamed, A., and Hinton, G. E. Speech recognition with deep recurrent neural networks. In ICASSP, pp. 6645-6649. IEEE, 2013.
    • (2013) ICASSP , pp. 6645-6649
    • Graves, A.1    Mohamed, A.2    Hinton, G.E.3
  • 10
    • 85057230110 scopus 로고    scopus 로고
    • Hierarchical recurrent neural networks for long-term dependencies
    • Touretzky, D. S., Mozer, M. C, and Hasselmo, M. E. (eds.), MIT Press
    • Hihi, S. E. and Bengio, Y. Hierarchical recurrent neural networks for long-term dependencies. In Touretzky, D. S., Mozer, M. C, and Hasselmo, M. E. (eds.), Advances in Neural Information Processing Systems 8, pp. 493-199. MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 493-199
    • Hihi, S.E.1    Bengio, Y.2
  • 11
    • 0003575034 scopus 로고
    • Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München. Advisor: J. Schmidhuber
    • Hochreiter, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München, 1991. Advisor: J. Schmidhuber.
    • (1991) Untersuchungen zu Dynamischen Neuronalen Netzen
    • Hochreiter, S.1
  • 13
    • 0041914606 scopus 로고    scopus 로고
    • Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
    • Kremer, S. C. and Kolen, J. F. (eds.), IEEE Press
    • Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In Kremer, S. C. and Kolen, J. F. (eds.), A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press, 2001.
    • (2001) A Field Guide to Dynamical Recurrent Neural Networks
    • Hochreiter, S.1    Bengio, Y.2    Frasconi, P.3    Schmidhuber, J.4
  • 14
    • 1842488370 scopus 로고    scopus 로고
    • GMD-Report 152 GMD - German National Research Institute for Computer Science
    • Laeger, H. Short term memory in echo state networks. GMD-Report 152, GMD - German National Research Institute for Computer Science, 2002. URL http://www.faculty.jacobs-university.de/hjaeger/pubs/STMEchoStatesTechRep.pdf
    • (2002) Short Term Memory in Echo State Networks
    • Laeger, H.1
  • 15
    • 33646241633 scopus 로고    scopus 로고
    • Learning long-term dependencies in NARX recurrent neural networks
    • Lin, T., Home, B.G., Tino, P., and Giles, C.L. Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7(6): 1329-1338, 1996.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1329-1338
    • Lin, T.1    Home, B.G.2    Tino, P.3    Giles, C.L.4
  • 16
    • 33847392380 scopus 로고    scopus 로고
    • IAM-OnDB - An on-line English sentence database acquired from handwritten text on a whiteboard
    • Liwicki, M. and Bunke, H. IAM-OnDB - an on-line English sentence database acquired from handwritten text on a whiteboard. In Proc. 8th Int. Conf. on Document Analysis and Recognition, volume 2, pp. 956-961, 2005.
    • (2005) Proc. 8th Int. Conf. on Document Analysis and Recognition , vol.2 , pp. 956-961
    • Liwicki, M.1    Bunke, H.2
  • 18
    • 80053451847 scopus 로고    scopus 로고
    • Learning recurrent neural networks with Hessian-free optimization
    • Getoor, L. and Scheffer, T. (eds.), New York, NY, USA. June. ACM. ISBN
    • Martens, J. and Sutskever, I. Learning recurrent neural networks with Hessian-free optimization. In Getoor, L. and Scheffer, T. (eds.), Proceedings of the 28th International Conference on Machine Learning (ICML-1I), pp. 1033-1040, New York, NY, USA. lune 2011. ACM. ISBN 978-1-4503-0619-5.
    • (2011) Proceedings of the 28th International Conference on Machine Learning (ICML-1I) , pp. 1033-1040
    • Martens, J.1    Sutskever, I.2
  • 20
    • 0038133939 scopus 로고
    • Distance measures for speech recognition: Psychological and instrumental
    • Chen, C. H. (ed.), Academic Press, New York
    • Mermelstein, P. Distance measures for speech recognition: Psychological and instrumental. In Chen, C. H. (ed.), Pattern Recognition and Artificial Intelligence, pp. 374-388. Academic Press, New York, 1976.
    • (1976) Pattern Recognition and Artificial Intelligence , pp. 374-388
    • Mermelstein, P.1
  • 21
    • 0005316958 scopus 로고
    • Induction of multiscale temporal structure
    • Lippman, D. S., Moody, I. E., and Touretzky, D. S. (eds.). Morgan Kaufmann
    • Mozer, M. C. Induction of multiscale temporal structure. In Lippman, D. S., Moody, I. E., and Touretzky, D. S. (eds.), Advances in Neural Information Processing Systems 4, pp. 275-282. Morgan Kaufmann, 1992.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 275-282
    • Mozer, M.C.1
  • 22
    • 21844527162 scopus 로고
    • Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing
    • Mozer, M. C. Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing. Connection Science, 6(2-3):247-280, 1994.
    • (1994) Connection Science , vol.6 , Issue.2-3 , pp. 247-280
    • Mozer, M.C.1
  • 23
    • 0038764011 scopus 로고    scopus 로고
    • Kaiman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets
    • Perez-Ortiz, I. A., Gers, F. A., Eck, D., and Schmidhuber, J. Kaiman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. Neural Networks, (16):241-250, 2003.
    • (2003) Neural Networks , Issue.16 , pp. 241-250
    • Perez-Ortiz, I.A.1    Gers, F.A.2    Eck, D.3    Schmidhuber, J.4
  • 24
    • 0007912190 scopus 로고
    • Learning sequential tasks by incrementally adding higher orders
    • S. I. Hanson, J. D. Cowan and Giles, C. L. (eds.), Morgan Kaufmann
    • Ring, M. Learning sequential tasks by incrementally adding higher orders. In S. I. Hanson, J. D. Cowan and Giles, C. L. (eds.), Advances in Neural Information Processing Systems 5, pp. 115-122, Morgan Kaufmann, 1993.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 115-122
    • Ring, M.1
  • 25
    • 84919803002 scopus 로고    scopus 로고
    • Recurrent transition hierarchies for continual learning: A general overview
    • WS-11-15 of AM/Workshops. AAAI
    • Ring, M. Recurrent transition hierarchies for continual learning: A general overview. In Lifelong Learning, volume WS-11-15 of AM/ Workshops. A A AI, 2011.
    • (2011) Lifelong Learning
    • Ring, M.1
  • 27
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart, D. E. and McClelland, J. L. (eds.), MIT Press
    • Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning internal representations by error propagation. In Rumelhart, D. E. and McClelland, J. L. (eds.), Parallel Distributed Processing, volume 1, pp. 318-362. MIT Press, 1986.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 29
    • 0006459160 scopus 로고
    • Technical Report FKI-148-91, Institut für Informatik, Technische Universität München, April
    • Schmidhuber, I. Neural sequence chunkers. Technical Report FKI-148-91, Institut für Informatik, Technische Universität München, April 1991.
    • (1991) Neural Sequence Chunkers
    • Schmidhuber, I.1
  • 30
    • 0001033889 scopus 로고
    • Learning complex, extended sequences using the principle of history compression
    • Schmidhuber, J. Learning complex, extended sequences using the principle of history compression. Neural Computation, 4(2): 234-242, 1992.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 234-242
    • Schmidhuber, J.1
  • 34
    • 73949127981 scopus 로고    scopus 로고
    • Temporal kernel recurrent neural networks
    • March
    • Sutskever, I. and Hinton, G. E. Temporal kernel recurrent neural networks. Neural Networks, 23(2):239-243, March 2010.
    • (2010) Neural Networks , vol.23 , Issue.2 , pp. 239-243
    • Sutskever, I.1    Hinton, G.E.2
  • 35
    • 80053459857 scopus 로고    scopus 로고
    • Generating text with recurrent neural networks
    • Getoor, L. and Scheffer, T. (eds.), New York, NY, USA, June. ACM. ISBN 978-1-4503-0619-5
    • Sutskever, I., Martens, J., and Hinton, G. Generating text with recurrent neural networks. In Getoor, L. and Scheffer, T. (eds.), Proceedings of the 28th International Conference on Machine Learning (ICML-ll), pp. 1017-1024, New York, NY, USA, June 2011. ACM. ISBN 978-1-4503-0619-5.
    • (2011) Proceedings of the 28th International Conference on Machine Learning (ICML-ll) , pp. 1017-1024
    • Sutskever, I.1    Martens, J.2    Hinton, G.3
  • 36
    • 84897510162 scopus 로고    scopus 로고
    • On the importance of initialization and momentum in deep learning
    • Dasgupta, Sanjoy and Mcallester, David (eds.). IMLR Workshop and Conference Proceedings, May
    • Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. On the importance of initialization and momentum in deep learning. In Dasgupta, Sanjoy and Mcallester, David (eds.), Proceedings of the 30th International Conference on Machine Learning (ICML-13), volume 28, pp. 1139-1147. IMLR Workshop and Conference Proceedings, May 2013. URL http://jmlr.org/proceedings/papers/v28/sutskever13.pdf.
    • (2013) Proceedings of the 30th International Conference on Machine Learning (ICML-13) , vol.28 , pp. 1139-1147
    • Sutskever, I.1    Martens, J.2    Dahl, G.E.3    Hinton, G.E.4
  • 37
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • Werbos, P. J. Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1, 1988.
    • (1988) Neural Networks , vol.1
    • Werbos, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.