-
1
-
-
0004262806
-
Finding structure in time
-
Center for Research in Language, University of California, San Diego
-
Elman, J. L. Finding structure in time. CRL Technical Report 8801, Center for Research in Language, University of California, San Diego, 1988.
-
(1988)
CRL Technical Report 8801
-
-
Elman, J.L.1
-
3
-
-
0003548585
-
-
Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., Pallett, D. S., and Dahlgren, N. L. DARPA TIMIT acoustic phonetic continuous speech corpus CD-ROM, 1993.
-
(1993)
DARPA TIMIT Acoustic Phonetic Continuous Speech Corpus CD-ROM
-
-
Garofolo, J.S.1
Lamel, L.F.2
Fisher, W.M.3
Fiscus, J.G.4
Pallett, D.S.5
Dahlgren, N.L.6
-
5
-
-
71249112130
-
Offline handwriting recognition with multidimensional recurrent neural networks
-
MIT Press, Cambridge, MA
-
Graves, A. and Schmidhuber, J. Offline handwriting recognition with multidimensional recurrent neural networks. In Advances in Neural Information Processing Systems 21, pp. 545-552. MIT Press, Cambridge, MA, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 545-552
-
-
Graves, A.1
Schmidhuber, J.2
-
6
-
-
31944444962
-
Rapid retraining on speech data with LSTM recurrent networks
-
IDSIA
-
Graves, A., Beringer, N., and Schmidhuber, J. Rapid retraining on speech data with LSTM recurrent networks. Technical Report IDSIA-09-05, IDSIA, 2005. URL http://www.idsia.ch/idsiareport/IDSIA-09-05.pdf.
-
(2005)
Technical Report IDSIA-09-05
-
-
Graves, A.1
Beringer, N.2
Schmidhuber, J.3
-
7
-
-
33749259827
-
Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets
-
Graves, A., Fernandez, S., Gomez, F. J., and Schmidhuber, J. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets. In ICML'06: Proceedings of the International Conference on Machine Learning. 2006.
-
(2006)
ICML'06: Proceedings of the International Conference on Machine Learning
-
-
Graves, A.1
Fernandez, S.2
Gomez, F.J.3
Schmidhuber, J.4
-
8
-
-
64849110608
-
A novel connectionist system for improved unconstrained handwriting recognition
-
Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., and Schmidhuber, J. A novel connectionist system for improved unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 2009.
-
(2009)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.31
, Issue.5
-
-
Graves, A.1
Liwicki, M.2
Fernandez, S.3
Bertolami, R.4
Bunke, H.5
Schmidhuber, J.6
-
9
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
IEEE
-
Graves, A., Mohamed, A., and Hinton, G. E. Speech recognition with deep recurrent neural networks. In ICASSP, pp. 6645-6649. IEEE, 2013.
-
(2013)
ICASSP
, pp. 6645-6649
-
-
Graves, A.1
Mohamed, A.2
Hinton, G.E.3
-
10
-
-
85057230110
-
Hierarchical recurrent neural networks for long-term dependencies
-
Touretzky, D. S., Mozer, M. C, and Hasselmo, M. E. (eds.), MIT Press
-
Hihi, S. E. and Bengio, Y. Hierarchical recurrent neural networks for long-term dependencies. In Touretzky, D. S., Mozer, M. C, and Hasselmo, M. E. (eds.), Advances in Neural Information Processing Systems 8, pp. 493-199. MIT Press, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 493-199
-
-
Hihi, S.E.1
Bengio, Y.2
-
11
-
-
0003575034
-
-
Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München. Advisor: J. Schmidhuber
-
Hochreiter, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München, 1991. Advisor: J. Schmidhuber.
-
(1991)
Untersuchungen zu Dynamischen Neuronalen Netzen
-
-
Hochreiter, S.1
-
13
-
-
0041914606
-
Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
-
Kremer, S. C. and Kolen, J. F. (eds.), IEEE Press
-
Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In Kremer, S. C. and Kolen, J. F. (eds.), A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press, 2001.
-
(2001)
A Field Guide to Dynamical Recurrent Neural Networks
-
-
Hochreiter, S.1
Bengio, Y.2
Frasconi, P.3
Schmidhuber, J.4
-
14
-
-
1842488370
-
-
GMD-Report 152 GMD - German National Research Institute for Computer Science
-
Laeger, H. Short term memory in echo state networks. GMD-Report 152, GMD - German National Research Institute for Computer Science, 2002. URL http://www.faculty.jacobs-university.de/hjaeger/pubs/STMEchoStatesTechRep.pdf
-
(2002)
Short Term Memory in Echo State Networks
-
-
Laeger, H.1
-
15
-
-
33646241633
-
Learning long-term dependencies in NARX recurrent neural networks
-
Lin, T., Home, B.G., Tino, P., and Giles, C.L. Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7(6): 1329-1338, 1996.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, Issue.6
, pp. 1329-1338
-
-
Lin, T.1
Home, B.G.2
Tino, P.3
Giles, C.L.4
-
16
-
-
33847392380
-
IAM-OnDB - An on-line English sentence database acquired from handwritten text on a whiteboard
-
Liwicki, M. and Bunke, H. IAM-OnDB - an on-line English sentence database acquired from handwritten text on a whiteboard. In Proc. 8th Int. Conf. on Document Analysis and Recognition, volume 2, pp. 956-961, 2005.
-
(2005)
Proc. 8th Int. Conf. on Document Analysis and Recognition
, vol.2
, pp. 956-961
-
-
Liwicki, M.1
Bunke, H.2
-
17
-
-
68249091203
-
A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks
-
September
-
Liwicki, M., Graves, A., Bunke, H., and Schmidhuber, J. A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks. In Proceedings of the 9th International Conference on Document Analysis and Recognition, September 2007.
-
(2007)
Proceedings of the 9th International Conference on Document Analysis and Recognition
-
-
Liwicki, M.1
Graves, A.2
Bunke, H.3
Schmidhuber, J.4
-
18
-
-
80053451847
-
Learning recurrent neural networks with Hessian-free optimization
-
Getoor, L. and Scheffer, T. (eds.), New York, NY, USA. June. ACM. ISBN
-
Martens, J. and Sutskever, I. Learning recurrent neural networks with Hessian-free optimization. In Getoor, L. and Scheffer, T. (eds.), Proceedings of the 28th International Conference on Machine Learning (ICML-1I), pp. 1033-1040, New York, NY, USA. lune 2011. ACM. ISBN 978-1-4503-0619-5.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-1I)
, pp. 1033-1040
-
-
Martens, J.1
Sutskever, I.2
-
19
-
-
34250657707
-
A system for robotic heart surgery that learns to tie knots using recurrent neural networks
-
Mayer, H., Gomez, F., Wierstra, D, Nagy, I., Knoll, A., and Schmidhuber, J. A system for robotic heart surgery that learns to tie knots using recurrent neural networks. In Proceedings of the International Conference on Intelligent Robotics and Systems (IROS-06, Beijing), 2006.
-
(2006)
Proceedings of the International Conference on Intelligent Robotics and Systems (IROS-06, Beijing)
-
-
Mayer, H.1
Gomez, F.2
Wierstra, D.3
Nagy, I.4
Knoll, A.5
Schmidhuber, J.6
-
20
-
-
0038133939
-
Distance measures for speech recognition: Psychological and instrumental
-
Chen, C. H. (ed.), Academic Press, New York
-
Mermelstein, P. Distance measures for speech recognition: Psychological and instrumental. In Chen, C. H. (ed.), Pattern Recognition and Artificial Intelligence, pp. 374-388. Academic Press, New York, 1976.
-
(1976)
Pattern Recognition and Artificial Intelligence
, pp. 374-388
-
-
Mermelstein, P.1
-
21
-
-
0005316958
-
Induction of multiscale temporal structure
-
Lippman, D. S., Moody, I. E., and Touretzky, D. S. (eds.). Morgan Kaufmann
-
Mozer, M. C. Induction of multiscale temporal structure. In Lippman, D. S., Moody, I. E., and Touretzky, D. S. (eds.), Advances in Neural Information Processing Systems 4, pp. 275-282. Morgan Kaufmann, 1992.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 275-282
-
-
Mozer, M.C.1
-
22
-
-
21844527162
-
Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing
-
Mozer, M. C. Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing. Connection Science, 6(2-3):247-280, 1994.
-
(1994)
Connection Science
, vol.6
, Issue.2-3
, pp. 247-280
-
-
Mozer, M.C.1
-
23
-
-
0038764011
-
Kaiman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets
-
Perez-Ortiz, I. A., Gers, F. A., Eck, D., and Schmidhuber, J. Kaiman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. Neural Networks, (16):241-250, 2003.
-
(2003)
Neural Networks
, Issue.16
, pp. 241-250
-
-
Perez-Ortiz, I.A.1
Gers, F.A.2
Eck, D.3
Schmidhuber, J.4
-
24
-
-
0007912190
-
Learning sequential tasks by incrementally adding higher orders
-
S. I. Hanson, J. D. Cowan and Giles, C. L. (eds.), Morgan Kaufmann
-
Ring, M. Learning sequential tasks by incrementally adding higher orders. In S. I. Hanson, J. D. Cowan and Giles, C. L. (eds.), Advances in Neural Information Processing Systems 5, pp. 115-122, Morgan Kaufmann, 1993.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
, pp. 115-122
-
-
Ring, M.1
-
25
-
-
84919803002
-
Recurrent transition hierarchies for continual learning: A general overview
-
WS-11-15 of AM/Workshops. AAAI
-
Ring, M. Recurrent transition hierarchies for continual learning: A general overview. In Lifelong Learning, volume WS-11-15 of AM/ Workshops. A A AI, 2011.
-
(2011)
Lifelong Learning
-
-
Ring, M.1
-
27
-
-
0000646059
-
Learning internal representations by error propagation
-
Rumelhart, D. E. and McClelland, J. L. (eds.), MIT Press
-
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning internal representations by error propagation. In Rumelhart, D. E. and McClelland, J. L. (eds.), Parallel Distributed Processing, volume 1, pp. 318-362. MIT Press, 1986.
-
(1986)
Parallel Distributed Processing
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
28
-
-
84908677215
-
-
Technical report Google February. arXiv:1402.1128 [cs.NE]
-
Sak, H., Senior, A., and Beaufays, F. Long Short-Term Memory based recurrent neural network architectures for large vocabulary speech recognition. Technical report, Google, February 2014. arXiv:1402.1128 [cs.NE].
-
(2014)
Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition
-
-
Sak, H.1
Senior, A.2
Beaufays, F.3
-
29
-
-
0006459160
-
-
Technical Report FKI-148-91, Institut für Informatik, Technische Universität München, April
-
Schmidhuber, I. Neural sequence chunkers. Technical Report FKI-148-91, Institut für Informatik, Technische Universität München, April 1991.
-
(1991)
Neural Sequence Chunkers
-
-
Schmidhuber, I.1
-
30
-
-
0001033889
-
Learning complex, extended sequences using the principle of history compression
-
Schmidhuber, J. Learning complex, extended sequences using the principle of history compression. Neural Computation, 4(2): 234-242, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.2
, pp. 234-242
-
-
Schmidhuber, J.1
-
31
-
-
84880715730
-
Evolino: Hybrid neuroevolution / optimal linear search for sequence prediction
-
Schmidhuber, J., Wierstra, D., and Gomez, F. J. Evolino: Hybrid neuroevolution / optimal linear search for sequence prediction. In Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI), pp. 853-858, 2005.
-
(2005)
Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI)
, pp. 853-858
-
-
Schmidhuber, J.1
Wierstra, D.2
Gomez, F.J.3
-
32
-
-
33847649288
-
Training recurrent networks by Evolino
-
Schmidhuber, J., Wierstra, D., Gagliolo, M., and Gomez, F. J. Training recurrent networks by Evolino. Neural Computation, 19(3):757-779, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.3
, pp. 757-779
-
-
Schmidhuber, J.1
Wierstra, D.2
Gagliolo, M.3
Gomez, F.J.4
-
34
-
-
73949127981
-
Temporal kernel recurrent neural networks
-
March
-
Sutskever, I. and Hinton, G. E. Temporal kernel recurrent neural networks. Neural Networks, 23(2):239-243, March 2010.
-
(2010)
Neural Networks
, vol.23
, Issue.2
, pp. 239-243
-
-
Sutskever, I.1
Hinton, G.E.2
-
35
-
-
80053459857
-
Generating text with recurrent neural networks
-
Getoor, L. and Scheffer, T. (eds.), New York, NY, USA, June. ACM. ISBN 978-1-4503-0619-5
-
Sutskever, I., Martens, J., and Hinton, G. Generating text with recurrent neural networks. In Getoor, L. and Scheffer, T. (eds.), Proceedings of the 28th International Conference on Machine Learning (ICML-ll), pp. 1017-1024, New York, NY, USA, June 2011. ACM. ISBN 978-1-4503-0619-5.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-ll)
, pp. 1017-1024
-
-
Sutskever, I.1
Martens, J.2
Hinton, G.3
-
36
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
Dasgupta, Sanjoy and Mcallester, David (eds.). IMLR Workshop and Conference Proceedings, May
-
Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. On the importance of initialization and momentum in deep learning. In Dasgupta, Sanjoy and Mcallester, David (eds.), Proceedings of the 30th International Conference on Machine Learning (ICML-13), volume 28, pp. 1139-1147. IMLR Workshop and Conference Proceedings, May 2013. URL http://jmlr.org/proceedings/papers/v28/sutskever13.pdf.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML-13)
, vol.28
, pp. 1139-1147
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.E.3
Hinton, G.E.4
-
37
-
-
0000903748
-
Generalization of backpropagation with application to a recurrent gas market model
-
Werbos, P. J. Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1, 1988.
-
(1988)
Neural Networks
, vol.1
-
-
Werbos, P.J.1
-
39
-
-
85132302281
-
Training recurrent networks using the extended kalman filter
-
IEEE
-
Williams, R. J. Training recurrent networks using the extended kalman filter. In Neural Networks, 1992. IJCNN, International Joint Conference on, volume 4, pp. 241-246. IEEE, 1992.
-
(1992)
Neural Networks, 1992. IJCNN, International Joint Conference on
, vol.4
, pp. 241-246
-
-
Williams, R.J.1
|