-
1
-
-
37549059612
-
Regulation of iron acquisition and storage: Consequences for iron-linked disorders
-
De Domenico I, McVey Ward D, Kaplan J. Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat Rev Mol Cell Biol. 2008;9(1):72-81.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, Issue.1
, pp. 72-81
-
-
De Domenico, I.1
McVey Ward, D.2
Kaplan, J.3
-
2
-
-
77954249308
-
Two to tango: Regulation of Mammalian iron metabolism
-
Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of Mammalian iron metabolism. Cell. 2010;142(1):24-38.
-
(2010)
Cell
, vol.142
, Issue.1
, pp. 24-38
-
-
Hentze, M.W.1
Muckenthaler, M.U.2
Galy, B.3
Camaschella, C.4
-
3
-
-
79952162002
-
Regulation of cellular iron metabolism
-
Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J. 2011;434(3):365-381.
-
(2011)
Biochem J
, vol.434
, Issue.3
, pp. 365-381
-
-
Wang, J.1
Pantopoulos, K.2
-
4
-
-
34447120059
-
Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs)
-
Peyssonnaux C, et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest. 2007;117(7):1926-1932.
-
(2007)
J Clin Invest
, vol.117
, Issue.7
, pp. 1926-1932
-
-
Peyssonnaux, C.1
-
5
-
-
84871434445
-
MTOR regulates cellular iron homeostasis through tristetraprolin
-
Bayeva M, et al. mTOR regulates cellular iron homeostasis through tristetraprolin. Cell Metab. 2012;16(5):645-657.
-
(2012)
Cell Metab
, vol.16
, Issue.5
, pp. 645-657
-
-
Bayeva, M.1
-
6
-
-
0037444803
-
Histone deacetylases (HDACs): Characterization of the classical HDAC family
-
de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370(Pt 3):737-749.
-
(2003)
Biochem J
, vol.370
, pp. 737-749
-
-
De Ruijter, A.J.1
Van Gennip, A.H.2
Caron, H.N.3
Kemp, S.4
Van Kuilenburg, A.B.5
-
8
-
-
81055122671
-
Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
-
Du J, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334(6057):806-809.
-
(2011)
Science
, vol.334
, Issue.6057
, pp. 806-809
-
-
Du, J.1
-
9
-
-
33748316536
-
SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic ? cells
-
Haigis MC, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic ? cells. Cell. 2006;126(5):941-954.
-
(2006)
Cell
, vol.126
, Issue.5
, pp. 941-954
-
-
Haigis, M.C.1
-
10
-
-
26244436281
-
Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
-
Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005;16(10):4623-4635.
-
(2005)
Mol Biol Cell
, vol.16
, Issue.10
, pp. 4623-4635
-
-
Michishita, E.1
Park, J.Y.2
Burneskis, J.M.3
Barrett, J.C.4
Horikawa, I.5
-
11
-
-
79954581231
-
Structure and biochemical functions of SIRT6
-
Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM. Structure and biochemical functions of SIRT6. J Biol Chem. 2011;286(16):14575-14587.
-
(2011)
J Biol Chem
, vol.286
, Issue.16
, pp. 14575-14587
-
-
Pan, P.W.1
Feldman, J.L.2
Devries, M.K.3
Dong, A.4
Edwards, A.M.5
Denu, J.M.6
-
12
-
-
84861852370
-
Are sirtuins viable targets for improving healthspan and lifespan?
-
Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R. Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov. 2012;11(6):443-461.
-
(2012)
Nat Rev Drug Discov
, vol.11
, Issue.6
, pp. 443-461
-
-
Baur, J.A.1
Ungvari, Z.2
Minor, R.K.3
Le Couteur, D.G.4
De Cabo, R.5
-
13
-
-
84877075626
-
Sirtuin deacylases: A molecular link between metabolism and immunity
-
Preyat N, Leo O. Sirtuin deacylases: a molecular link between metabolism and immunity. J Leukoc Biol. 2013;93(5):669-680.
-
(2013)
J Leukoc Biol
, vol.93
, Issue.5
, pp. 669-680
-
-
Preyat, N.1
Leo, O.2
-
14
-
-
84946227815
-
Emerging role of sirtuin 2 in the regulation of mammalian metabolism
-
Gomes P, Outeiro TF, Cavadas C. Emerging role of sirtuin 2 in the regulation of mammalian metabolism. Trends Pharmacol Sci. 2015;36(11):756-768.
-
(2015)
Trends Pharmacol Sci
, vol.36
, Issue.11
, pp. 756-768
-
-
Gomes, P.1
Outeiro, T.F.2
Cavadas, C.3
-
15
-
-
79959906869
-
Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase
-
Jiang W, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell. 2011;43(1):33-44.
-
(2011)
Mol Cell
, vol.43
, Issue.1
, pp. 33-44
-
-
Jiang, W.1
-
16
-
-
64049089450
-
SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma
-
Wang F, Tong Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Mol Biol Cell. 2009;20(3):801-808.
-
(2009)
Mol Biol Cell
, vol.20
, Issue.3
, pp. 801-808
-
-
Wang, F.1
Tong, Q.2
-
17
-
-
78649738291
-
SIRT2 regulates NF-?B dependent gene expression through deacetylation of p65 Lys310
-
Rothgiesser KM, Erener S, Waibel S, Lüscher B, Hottiger MO. SIRT2 regulates NF-?B dependent gene expression through deacetylation of p65 Lys310. J Cell Sci. 2010;123(pt 24):4251-4258.
-
(2010)
J Cell Sci
, vol.123
, pp. 4251-4258
-
-
Rothgiesser, K.M.1
Erener, S.2
Waibel, S.3
Lüscher, B.4
Hottiger, M.O.5
-
18
-
-
84875309392
-
The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation
-
Serrano L, et al. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev. 2013;27(6):639-653.
-
(2013)
Genes Dev
, vol.27
, Issue.6
, pp. 639-653
-
-
Serrano, L.1
-
19
-
-
84874709843
-
SIRT1 and SIRT2: Emerging targets in neurodegeneration
-
Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med. 2013;5(3):344-352.
-
(2013)
EMBO Mol Med
, vol.5
, Issue.3
, pp. 344-352
-
-
Donmez, G.1
Outeiro, T.F.2
-
20
-
-
84962778960
-
SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis
-
Park SH, et al. SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis. Transl Cancer Res. 2012;1(1):15-21.
-
(2012)
Transl Cancer Res
, vol.1
, Issue.1
, pp. 15-21
-
-
Park, S.H.1
-
21
-
-
84930278675
-
Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control
-
Zhang C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell. 2014;5(10):750-760.
-
(2014)
Protein Cell
, vol.5
, Issue.10
, pp. 750-760
-
-
Zhang, C.1
-
22
-
-
77955600573
-
Iron homeostasis and the inflammatory response
-
Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu Rev Nutr. 2010;30:105-122.
-
(2010)
Annu Rev Nutr
, vol.30
, pp. 105-122
-
-
Wessling-Resnick, M.1
-
23
-
-
85007532115
-
Iron, inflammation and invasion of cancer cells
-
Fischer-Fodor E, Miklasova N, Berindan-Neagoe I, Saha B. Iron, inflammation and invasion of cancer cells. Clujul Med. 2015;88(3):272-277.
-
(2015)
Clujul Med
, vol.88
, Issue.3
, pp. 272-277
-
-
Fischer-Fodor, E.1
Miklasova, N.2
Berindan-Neagoe, I.3
Saha, B.4
-
24
-
-
84907999177
-
The role of iron in brain ageing and neurodegenerative disorders
-
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10):1045-1060.
-
(2014)
Lancet Neurol
, vol.13
, Issue.10
, pp. 1045-1060
-
-
Ward, R.J.1
Zucca, F.A.2
Duyn, J.H.3
Crichton, R.R.4
Zecca, L.5
-
25
-
-
80054769188
-
SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity
-
Kim HS, et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell. 2011;20(4):487-499.
-
(2011)
Cancer Cell
, vol.20
, Issue.4
, pp. 487-499
-
-
Kim, H.S.1
-
26
-
-
77953713414
-
Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position-7007 of the FPN1 promoter
-
Marro S, et al. Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position-7007 of the FPN1 promoter. Haematologica. 2010;95(8):1261-1268.
-
(2010)
Haematologica
, vol.95
, Issue.8
, pp. 1261-1268
-
-
Marro, S.1
-
27
-
-
84879571563
-
Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection
-
Nairz M, et al. Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection. J Exp Med. 2013;210(5):855-873.
-
(2013)
J Exp Med
, vol.210
, Issue.5
, pp. 855-873
-
-
Nairz, M.1
-
28
-
-
81855204961
-
Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation
-
Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med. 2011;32(4-6):234-246.
-
(2011)
Mol Aspects Med
, vol.32
, Issue.4-6
, pp. 234-246
-
-
Hybertson, B.M.1
Gao, B.2
Bose, S.K.3
McCord, J.M.4
-
29
-
-
78751703950
-
Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution
-
Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells. 2011;16(2):123-140.
-
(2011)
Genes Cells
, vol.16
, Issue.2
, pp. 123-140
-
-
Taguchi, K.1
Motohashi, H.2
Yamamoto, M.3
-
30
-
-
79953225194
-
Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization
-
Kawai Y, Garduño L, Theodore M, Yang J, Arinze IJ. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem. 2011;286(9):7629-7640.
-
(2011)
J Biol Chem
, vol.286
, Issue.9
, pp. 7629-7640
-
-
Kawai, Y.1
Garduño, L.2
Theodore, M.3
Yang, J.4
Arinze, I.J.5
-
31
-
-
84937525787
-
SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis
-
Jenkitkasemwong S, et al. SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. Cell Metab. 2015;22(1):138-150.
-
(2015)
Cell Metab
, vol.22
, Issue.1
, pp. 138-150
-
-
Jenkitkasemwong, S.1
-
32
-
-
85119220956
-
Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster (vol 12, pg 373, 2010)
-
Muhlenhoff U, et al. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster (vol 12, pg 373, 2010). Cell Metab. 2014;20(4):696.
-
(2014)
Cell Metab
, vol.20
, Issue.4
, pp. 696
-
-
Muhlenhoff, U.1
-
33
-
-
84937480802
-
SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1
-
Jeong SM, Lee J, Finley LW, Schmidt PJ, Fleming MD, Haigis MC. SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1. Oncogene. 2015;34(16):2115-2124.
-
(2015)
Oncogene
, vol.34
, Issue.16
, pp. 2115-2124
-
-
Jeong, S.M.1
Lee, J.2
Finley, L.W.3
Schmidt, P.J.4
Fleming, M.D.5
Haigis, M.C.6
-
34
-
-
33846287556
-
Iron in fetal and neonatal nutrition
-
Rao R, Georgieff MK. Iron in fetal and neonatal nutrition. Semin Fetal Neonatal Med. 2007;12(1):54-63.
-
(2007)
Semin Fetal Neonatal Med
, vol.12
, Issue.1
, pp. 54-63
-
-
Rao, R.1
Georgieff, M.K.2
-
35
-
-
84867034260
-
Role of nrf2 in oxidative stress and toxicity
-
Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401-426.
-
(2013)
Annu Rev Pharmacol Toxicol
, vol.53
, pp. 401-426
-
-
Ma, Q.1
-
36
-
-
0021719812
-
Heme regulation of HeLa cell transferrin receptor number
-
Ward JH, Jordan I, Kushner JP, Kaplan J. Heme regulation of HeLa cell transferrin receptor number. J Biol Chem. 1984;259(21):13235-13240.
-
(1984)
J Biol Chem
, vol.259
, Issue.21
, pp. 13235-13240
-
-
Ward, J.H.1
Jordan, I.2
Kushner, J.P.3
Kaplan, J.4
-
37
-
-
84888131588
-
Liver X receptor activation stimulates iron export in human alternative macrophages
-
Bories G, et al. Liver X receptor activation stimulates iron export in human alternative macrophages. Circ Res. 2013;113(11):1196-1205.
-
(2013)
Circ Res
, vol.113
, Issue.11
, pp. 1196-1205
-
-
Bories, G.1
-
38
-
-
0036807365
-
A method for characterising cell death in vitro by combining propidium iodide staining with immunohistochemistry
-
Brana C, Benham C, Sundstrom L. A method for characterising cell death in vitro by combining propidium iodide staining with immunohistochemistry. Brain Res Brain Res Protoc. 2002;10(2):109-114.
-
(2002)
Brain Res Brain Res Protoc
, vol.10
, Issue.2
, pp. 109-114
-
-
Brana, C.1
Benham, C.2
Sundstrom, L.3
-
39
-
-
84902670910
-
SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient-and exercise-induced stress
-
Vassilopoulos A, et al. SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient-and exercise-induced stress. Antioxid Redox Signal. 2014;21(4):551-564.
-
(2014)
Antioxid Redox Signal
, vol.21
, Issue.4
, pp. 551-564
-
-
Vassilopoulos, A.1
-
40
-
-
33846012866
-
A randomised comparison of deferasirox versus deferoxamine for the treatment of transfusional iron overload in sickle cell disease
-
Vichinsky E, et al. A randomised comparison of deferasirox versus deferoxamine for the treatment of transfusional iron overload in sickle cell disease. Br J Haematol. 2007;136(3):501-508.
-
(2007)
Br J Haematol
, vol.136
, Issue.3
, pp. 501-508
-
-
Vichinsky, E.1
|