메뉴 건너뛰기




Volumn 83, Issue 3, 2017, Pages 195-206

Spatial-spectral unsupervised convolutional sparse auto-encoder classifier for hyperspectral imagery

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; EXTRACTION; FEATURE EXTRACTION; IMAGE CLASSIFICATION; LEARNING SYSTEMS; REMOTE SENSING; SIGNAL ENCODING; SPECTROSCOPY;

EID: 85018684575     PISSN: 00991112     EISSN: None     Source Type: Journal    
DOI: 10.14358/PERS.83.3.195     Document Type: Article
Times cited : (25)

References (50)
  • 1
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning-A new frontier in artificial intelligence research
    • Arel, I., D.C. Rose, and T.P. Karnowski, 2010. Deep machine learning-A new frontier in artificial intelligence research, IEEE Computational Intelligence Magazine, 5(4):13–18.
    • (2010) IEEE Computational Intelligence Magazine , vol.5 , Issue.4 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 6
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
    • Camps-Valls, G., D. Tuia, L. Bruzzone, and J.A. Benediktsson, 2014. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods, IEEE Signal Processing Magazine, 31(1):45–54.
    • (2014) IEEE Signal Processing Magazine , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Benediktsson, J.A.4
  • 10
    • 0024856071 scopus 로고
    • Application of remote sensing and geographic information systems to forest fire hazard mapping
    • Chuvieco, E., and R.G. Congalton, 1989. Application of remote sensing and geographic information systems to forest fire hazard mapping, Remote Sensing of Environment, 29(2):147–159.
    • (1989) Remote Sensing of Environment , vol.29 , Issue.2 , pp. 147-159
    • Chuvieco, E.1    Congalton, R.G.2
  • 11
    • 84862283411 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • Coates, A., A.Y. Ng, and H. Lee, 2011. An analysis of single-layer networks in unsupervised feature learning, Journal of Machine Learning Research, 15:215–223.
    • (2011) Journal of Machine Learning Research , vol.15 , pp. 215-223
    • Coates, A.1    Ng, A.Y.2    Lee, H.3
  • 12
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classification of remotely sensed data
    • Congalton, R.G., 1991. A review of assessing the accuracy of classification of remotely sensed data, Remote Sensing of Environment, 37(1):35–46.
    • (1991) Remote Sensing of Environment , vol.37 , Issue.1 , pp. 35-46
    • Congalton, R.G.1
  • 14
    • 34249753618 scopus 로고
    • Support Vector Networks
    • Cortes, C., and V. Vapnik, 1995. Support Vector Networks, Machine Learning, 20:273–297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 17
    • 12844263684 scopus 로고    scopus 로고
    • Convolutional face finder: A neural architecture for fast and robust face detection
    • Garcia, C., and M. Delakis, 2004. Convolutional face finder: A neural architecture for fast and robust face detection, IEEE Pattern Analysis and Machine Intelligence, 26(11):1408–1423.
    • (2004) IEEE Pattern Analysis and Machine Intelligence , vol.26 , Issue.11 , pp. 1408-1423
    • Garcia, C.1    Delakis, M.2
  • 19
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • He, K., X. Zhang, S. Ren, and J. Sun, 2015. Spatial pyramid pooling in deep convolutional networks for visual recognition, IEEE Pattern Analysis and Machine Intelligence, 37(9):1904–1916.
    • (2015) IEEE Pattern Analysis and Machine Intelligence , vol.37 , Issue.9 , pp. 1904-1916
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 20
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., S. Osindero, and Y.-W. Teh, 2006. A fast learning algorithm for deep belief nets, Neural Computation, 18(7):1527–1554.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 21
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E., and R.R. Salakhutdinov, 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786):504–507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 24
    • 16444366244 scopus 로고    scopus 로고
    • Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data
    • Jimenez, L.O., J.L. Rivera-Median, and E. Rodriguez-Diaz, 2005. Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, 43(4):844–851.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 844-851
    • Jimenez, L.O.1    Rivera-Median, J.L.2    Rodriguez-Diaz, E.3
  • 25
    • 84896314121 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image classification with edge-preserving filtering
    • Kang, X., Sh. Li, and J.A. Benediktsson, 2014. Spectral-spatial hyperspectral image classification with edge-preserving filtering, IEEE Transactions on Geoscience and Remote Sensing, 52(5):2666–2677.
    • (2014) IEEE Transactions on Geoscience and Remote Sensing , vol.52 , Issue.5 , pp. 2666-2677
    • Kang, X.1    Li, S.H.2    Benediktsson, J.A.3
  • 28
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Y. Bengio, and G.E. Hinton, 2015. Deep learning, Nature, 521(7553):436–444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.E.3
  • 29
    • 0032203257 scopus 로고    scopus 로고
    • Gradient based learning applied to document recognition
    • LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner, 1998. Gradient based learning applied to document recognition, Proceedings of the IEEE, 86(11):2278–2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 32
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • Liu, D.C., and J. Nocedal, 1989. On the limited memory BFGS method for large scale optimization, Mathematical Programming, 45(1–3):503–528.
    • (1989) Mathematical Programming , vol.45 , Issue.1-3 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 33
    • 84883778115 scopus 로고    scopus 로고
    • Remote sensingbased house value estimation using an optimized regional regression model
    • Lu, Zh. Y., J. Im, L. Quackenbush, and S. Yoo, 2013. Remote sensingbased house value estimation using an optimized regional regression model. Photogrammetric Engineering & Remote Sensing, 12(7):809–820.
    • (2013) Photogrammetric Engineering & Remote Sensing , vol.12 , Issue.7 , pp. 809-820
    • Lu, Z.Y.1    Im, J.2    Quackenbush, L.3    Yoo, S.4
  • 34
    • 79955521136 scopus 로고    scopus 로고
    • Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis
    • Dalla Mura, M., A. Villa, J.A. Benediktsson, J. Chanussot, and L. Bruzzone, 2011. Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis, IEEE Geoscience and Remote Sensing Letters, 8(3):542–546.
    • (2011) IEEE Geoscience and Remote Sensing Letters , vol.8 , Issue.3 , pp. 542-546
    • Dalla Mura, M.1    Villa, A.2    Benediktsson, J.A.3    Chanussot, J.4    Bruzzone, L.5
  • 35
    • 85018665540 scopus 로고    scopus 로고
    • Sparse autoencoder, CS294A Lecture Notes
    • Ng, A., 2010. Sparse autoencoder, CS294A Lecture Notes, Stanford University.
    • (2010) Stanford University
    • Ng, A.1
  • 37
    • 84907063378 scopus 로고    scopus 로고
    • A hierarchical building detection method for very high resolution remotely sensed images combined with DSM using graph cut optimization
    • Qin, R.J., and W. Fang, 2014. A hierarchical building detection method for very high resolution remotely sensed images combined with DSM using graph cut optimization, Photogrammetric Engineering & Remote Sensing, 11(7):873–883.
    • (2014) Photogrammetric Engineering & Remote Sensing , vol.11 , Issue.7 , pp. 873-883
    • Qin, R.J.1    Fang, W.2
  • 39
    • 45749110924 scopus 로고    scopus 로고
    • Representational power of restricted Boltzmann Machines and deep belief networks
    • Roux, L., and Y. Bengio, 2008. Representational power of restricted Boltzmann Machines and deep belief networks, Neural Computation, 20(6):1631–1649.
    • (2008) Neural Computation , vol.20 , Issue.6 , pp. 1631-1649
    • Roux, L.1    Bengio, Y.2
  • 47
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol, 2010. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, Journal of Machine Learning Research, 11(6):3371–3408.
    • (2010) Journal of Machine Learning Research , vol.11 , Issue.6 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.5
  • 49
    • 84938536972 scopus 로고    scopus 로고
    • Learning hierarchical spectral-spectral features for hyperspectral image classification
    • Zhou, Y., and Y. Wei, 2015. Learning hierarchical spectral-spectral features for hyperspectral image classification, IEEE Transactions on Cybernetics, 46(7):1667–1678.
    • (2015) IEEE Transactions on Cybernetics , vol.46 , Issue.7 , pp. 1667-1678
    • Zhou, Y.1    Wei, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.