-
1
-
-
79954915318
-
Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis
-
Bevins, C. L., and N. H. Salzman. 2011. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 9: 356-368.
-
(2011)
Nat. Rev. Microbiol
, vol.9
, pp. 356-368
-
-
Bevins, C.L.1
Salzman, N.H.2
-
2
-
-
84873672050
-
Paneth cells: Maestros of the small intestinal crypts
-
Clevers, H. C., and C. L. Bevins. 2013. Paneth cells: maestros of the small intestinal crypts. Annu. Rev. Physiol. 75: 289-311.
-
(2013)
Annu. Rev. Physiol
, vol.75
, pp. 289-311
-
-
Clevers, H.C.1
Bevins, C.L.2
-
3
-
-
58549111588
-
Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface
-
Vaishnava, S., C. L. Behrendt, A. S. Ismail, L. Eckmann, and L. V. Hooper. 2008. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl. Acad. Sci. USA 105: 20858-20863.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 20858-20863
-
-
Vaishnava, S.1
Behrendt, C.L.2
Ismail, A.S.3
Eckmann, L.4
Hooper, L.V.5
-
4
-
-
33748039462
-
Symbiotic bacteria direct expression of an intestinal bactericidal lectin
-
Cash, H. L., C. V. Whitham, C. L. Behrendt, and L. V. Hooper. 2006. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313: 1126-1130.
-
(2006)
Science
, vol.313
, pp. 1126-1130
-
-
Cash, H.L.1
Whitham, C.V.2
Behrendt, C.L.3
Hooper, L.V.4
-
5
-
-
84865369416
-
Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice
-
El Aidy, S., P. van Baarlen, M. Derrien, D. J. Lindenbergh-Kortleve, G. Hooiveld, F. Levenez, J. Doré, J. Dekker, J. N. Samsom, E. E. Nieuwenhuis, and M. Kleerebezem. 2012. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol. 5: 567-579.
-
(2012)
Mucosal Immunol
, vol.5
, pp. 567-579
-
-
El Aidy, S.1
Van Baarlen, P.2
Derrien, M.3
Lindenbergh-Kortleve, D.J.4
Hooiveld, G.5
Levenez, F.6
Doré, J.7
Dekker, J.8
Samsom, J.N.9
Nieuwenhuis, E.E.10
Kleerebezem, M.11
-
6
-
-
0034252293
-
Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria
-
Ayabe, T., D. P. Satchell, C. L. Wilson, W. C. Parks, M. E. Selsted, and A. J. Ouellette. 2000. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1: 113-118.
-
(2000)
Nat. Immunol
, vol.1
, pp. 113-118
-
-
Ayabe, T.1
Satchell, D.P.2
Wilson, C.L.3
Parks, W.C.4
Selsted, M.E.5
Ouellette, A.J.6
-
7
-
-
84939616303
-
Commensal bacteria direct selective cargo sorting to promote symbiosis
-
Zhang, Q., Y. Pan, R. Yan, B. Zeng, H. Wang, X. Zhang, W. Li, H. Wei, and Z. Liu. 2015. Commensal bacteria direct selective cargo sorting to promote symbiosis. Nat. Immunol. 16: 918-926.
-
(2015)
Nat. Immunol
, vol.16
, pp. 918-926
-
-
Zhang, Q.1
Pan, Y.2
Yan, R.3
Zeng, B.4
Wang, H.5
Zhang, X.6
Li, W.7
Wei, H.8
Liu, Z.9
-
8
-
-
0019060557
-
Crohns disease: Transmission electron microscopic studies i Barrier function Possible changes related to alterations of cell coat, mucous coat, epithelial cells, and Paneth cells
-
Dvorak, A. M., and G. R. Dickersin. 1980. Crohns disease: Transmission electron microscopic studies. I. Barrier function. Possible changes related to alterations of cell coat, mucous coat, epithelial cells, and Paneth cells. Hum. Pathol. 11(Suppl. 5): 561-571.
-
(1980)
Hum. Pathol
, vol.11
, pp. 561-571
-
-
Dvorak, A.M.1
Dickersin, G.R.2
-
9
-
-
84890735514
-
Genetic variants synthesize to produce Paneth cell phenotypes that define subtypes of Crohns disease
-
VanDussen, K. L., T. C. Liu, D. Li, F. Towfic, N. Modiano, R. Winter, T. Haritunians, K. D. Taylor, D. Dhall, S. R. Targan, et al. 2014. Genetic variants synthesize to produce Paneth cell phenotypes that define subtypes of Crohns disease. Gastroenterology 146: 200-209.
-
(2014)
Gastroenterology
, vol.146
, pp. 200-209
-
-
Vandussen, K.L.1
Liu, T.C.2
Li, D.3
Towfic, F.4
Modiano, N.5
Winter, R.6
Haritunians, T.7
Taylor, K.D.8
Dhall, D.9
Targan, S.R.10
-
10
-
-
50249086073
-
XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease
-
Kaser, A., A. H. Lee, A. Franke, J. N. Glickman, S. Zeissig, H. Tilg, E. E. Nieuwenhuis, D. E. Higgins, S. Schreiber, L. H. Glimcher, and R. S. Blumberg. 2008. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134: 743-756.
-
(2008)
Cell
, vol.134
, pp. 743-756
-
-
Kaser, A.1
Lee, A.H.2
Franke, A.3
Glickman, J.N.4
Zeissig, S.5
Tilg, H.6
Nieuwenhuis, E.E.7
Higgins, D.E.8
Schreiber, S.9
Glimcher, L.H.10
Blumberg, R.S.11
-
11
-
-
84887621906
-
Paneth cells as a site of origin for intestinal inflammation
-
Adolph, T. E., M. F. Tomczak, L. Niederreiter, H. J. Ko, J. Böck, E. Martinez-Naves, J. N. Glickman, M. Tschurtschenthaler, J. Hartwig, S. Hosomi, et al. 2013. Paneth cells as a site of origin for intestinal inflammation. Nature 503: 272-276.
-
(2013)
Nature
, vol.503
, pp. 272-276
-
-
Adolph, T.E.1
Tomczak, M.F.2
Niederreiter, L.3
Ko, H.J.4
Böck, J.5
Martinez-Naves, E.6
Glickman, J.N.7
Tschurtschenthaler, M.8
Hartwig, J.9
Hosomi, S.10
-
12
-
-
56249135538
-
A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
-
Cadwell, K., J. Y. Liu, S. L. Brown, H. Miyoshi, J. Loh, J. K. Lennerz, C. Kishi, W. Kc, J. A. Carrero, S. Hunt, et al. 2008. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456: 259-263.
-
(2008)
Nature
, vol.456
, pp. 259-263
-
-
Cadwell, K.1
Liu, J.Y.2
Brown, S.L.3
Miyoshi, H.4
Loh, J.5
Lennerz, J.K.6
Kishi, C.7
Kc, W.8
Carrero, J.A.9
Hunt, S.10
-
13
-
-
77953904042
-
Virus-plussusceptibility gene interaction determines Crohns disease gene Atg16L1 phenotypes in intestine
-
Cadwell, K., K. K. Patel, N. S. Maloney, T. C. Liu, A. C. Ng, C. E. Storer, R. D. Head, R. Xavier, T. S. Stappenbeck, and H. W. Virgin. 2010. Virus-plussusceptibility gene interaction determines Crohns disease gene Atg16L1 phenotypes in intestine. Cell 141: 1135-1145.
-
(2010)
Cell
, vol.141
, pp. 1135-1145
-
-
Cadwell, K.1
Patel, K.K.2
Maloney, N.S.3
Liu, T.C.4
Ng, A.C.5
Storer, C.E.6
Head, R.D.7
Xavier, R.8
Stappenbeck, T.S.9
Virgin, H.W.10
-
14
-
-
13244292161
-
Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract
-
Kobayashi, K. S., M. Chamaillard, Y. Ogura, O. Henegariu, N. Inohara, G. Nunez, and R. A. Flavell. 2005. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307: 731-734.
-
(2005)
Science
, vol.307
, pp. 731-734
-
-
Kobayashi, K.S.1
Chamaillard, M.2
Ogura, Y.3
Henegariu, O.4
Inohara, N.5
Nunez, G.6
Flavell, R.A.7
-
15
-
-
84899949037
-
Mouse Paneth cell antimicrobial function is independent of Nod2
-
Shanahan, M. T., I. M. Carroll, E. Grossniklaus, A. White, R. J. von Furstenberg, R. Barner, A. A. Fodor, S. J. Henning, R. B. Sartor, and A. S. Gulati. 2014. Mouse Paneth cell antimicrobial function is independent of Nod2. Gut 63: 903-910.
-
(2014)
Gut
, vol.63
, pp. 903-910
-
-
Shanahan, M.T.1
Carroll, I.M.2
Grossniklaus, E.3
White, A.4
Von Furstenberg, R.J.5
Barner, R.6
Fodor, A.A.7
Henning, S.J.8
Sartor, R.B.9
Gulati, A.S.10
-
16
-
-
0035978651
-
Association of NOD2 leucine-rich repeat variants with susceptibility to Crohns disease
-
Hugot, J. P., M. Chamaillard, H. Zouali, S. Lesage, J. P. Cézard, J. Belaiche, S. Almer, C. Tysk, C. A. OMorain, M. Gassull, et al. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohns disease. Nature 411: 599-603.
-
(2001)
Nature
, vol.411
, pp. 599-603
-
-
Hugot, J.P.1
Chamaillard, M.2
Zouali, H.3
Lesage, S.4
Cézard, J.P.5
Belaiche, J.6
Almer, S.7
Tysk, C.8
Omorain, C.A.9
Gassull, M.10
-
17
-
-
0035978533
-
A frameshift mutation in NOD2 associated with susceptibility to Crohns disease
-
Ogura, Y., D. K. Bonen, N. Inohara, D. L. Nicolae, F. F. Chen, R. Ramos, H. Britton, T. Moran, R. Karaliuskas, R. H. Duerr, et al. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohns disease. Nature 411: 603-606.
-
(2001)
Nature
, vol.411
, pp. 603-606
-
-
Ogura, Y.1
Bonen, D.K.2
Inohara, N.3
Nicolae, D.L.4
Chen, F.F.5
Ramos, R.6
Britton, H.7
Moran, T.8
Karaliuskas, R.9
Duerr, R.H.10
-
18
-
-
33646749270
-
Dense-core secretory granule biogenesis
-
Kim, T., M. C. Gondré-Lewis, I. Arnaoutova, and Y. P. Loh. 2006. Dense-core secretory granule biogenesis. Physiology (Bethesda) 21: 124-133.
-
(2006)
Physiology (Bethesda)
, vol.21
, pp. 124-133
-
-
Kim, T.1
Gondré-Lewis, M.C.2
Arnaoutova, I.3
Loh, Y.P.4
-
19
-
-
0033591330
-
Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB
-
Inohara, N., T. Koseki, L. del Peso, Y. Hu, C. Yee, S. Chen, R. Carrio, J. Merino, D. Liu, J. Ni, and G. Núnez. 1999. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem. 274: 14560-14567.
-
(1999)
J. Biol. Chem
, vol.274
, pp. 14560-14567
-
-
Inohara, N.1
Koseki, T.2
Del Peso, L.3
Hu, Y.4
Yee, C.5
Chen, S.6
Carrio, R.7
Merino, J.8
Liu, D.9
Ni, J.10
Núnez, G.11
-
20
-
-
10744222688
-
Expression of NOD2 in Paneth cells: A possible link to Crohns ileitis
-
Ogura, Y., S. Lala, W. Xin, E. Smith, T. A. Dowds, F. F. Chen, E. Zimmermann, M. Tretiakova, J. H. Cho, J. Hart, et al. 2003. Expression of NOD2 in Paneth cells: A possible link to Crohns ileitis. Gut 52: 1591-1597.
-
(2003)
Gut
, vol.52
, pp. 1591-1597
-
-
Ogura, Y.1
Lala, S.2
Xin, W.3
Smith, E.4
Dowds, T.A.5
Chen, F.F.6
Zimmermann, E.7
Tretiakova, M.8
Cho, J.H.9
Hart, J.10
-
21
-
-
84893702846
-
NOD proteins: Regulators of inflammation in health and disease
-
Philpott, D. J., M. T. Sorbara, S. J. Robertson, K. Croitoru, and S. E. Girardin. 2014. NOD proteins: regulators of inflammation in health and disease. Nat. Rev. Immunol. 14: 9-23.
-
(2014)
Nat. Rev. Immunol
, vol.14
, pp. 9-23
-
-
Philpott, D.J.1
Sorbara, M.T.2
Robertson, S.J.3
Croitoru, K.4
Girardin, S.E.5
-
22
-
-
84918535219
-
NOD1 and NOD2: Signaling, host defense, and inflammatory disease
-
Caruso, R., N. Warner, N. Inohara, and G. Núnez. 2014. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41: 898-908.
-
(2014)
Immunity
, vol.41
, pp. 898-908
-
-
Caruso, R.1
Warner, N.2
Inohara, N.3
Núnez, G.4
-
23
-
-
0037075551
-
RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems
-
Kobayashi, K., N. Inohara, L. D. Hernandez, J. E. Galán, G. Núnez, C. A. Janeway, R. Medzhitov, and R. A. Flavell. 2002. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416: 194-199.
-
(2002)
Nature
, vol.416
, pp. 194-199
-
-
Kobayashi, K.1
Inohara, N.2
Hernandez, L.D.3
Galán, J.E.4
Núnez, G.5
Janeway, C.A.6
Medzhitov, R.7
Flavell, R.A.8
-
24
-
-
33846936219
-
RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs
-
Park, J. H., Y. G. Kim, C. McDonald, T. D. Kanneganti, M. Hasegawa, M. Body-Malapel, N. Inohara, and G. Núnez. 2007. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J. Immunol. 178: 2380-2386.
-
(2007)
J. Immunol
, vol.178
, pp. 2380-2386
-
-
Park, J.H.1
Kim, Y.G.2
McDonald, C.3
Kanneganti, T.D.4
Hasegawa, M.5
Body-Malapel, M.6
Inohara, N.7
Núnez, G.8
-
25
-
-
79955129532
-
Essential role of Rip2 in the modulation of innate and adaptive immunity triggered by Nod1 and Nod2 ligands
-
Magalhaes, J. G., J. Lee, K. Geddes, S. Rubino, D. J. Philpott, and S. E. Girardin. 2011. Essential role of Rip2 in the modulation of innate and adaptive immunity triggered by Nod1 and Nod2 ligands. Eur. J. Immunol. 41: 1445-1455.
-
(2011)
Eur. J. Immunol
, vol.41
, pp. 1445-1455
-
-
Magalhaes, J.G.1
Lee, J.2
Geddes, K.3
Rubino, S.4
Philpott, D.J.5
Girardin, S.E.6
-
26
-
-
37548999003
-
NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2
-
Yang, Y., C. Yin, A. Pandey, D. Abbott, C. Sassetti, and M. A. Kelliher. 2007. NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2. J. Biol. Chem. 282: 36223-36229.
-
(2007)
J. Biol. Chem
, vol.282
, pp. 36223-36229
-
-
Yang, Y.1
Yin, C.2
Pandey, A.3
Abbott, D.4
Sassetti, C.5
Kelliher, M.A.6
-
27
-
-
84868336049
-
Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease
-
International IBD Genetics Consortium (IIBDGC)
-
Jostins, L., S. Ripke, R. K. Weersma, R. H. Duerr, D. P. McGovern, K. Y. Hui, J. C. Lee, L. P. Schumm, Y. Sharma, C. A. Anderson, et al; International IBD Genetics Consortium (IIBDGC). 2012. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491: 119-124.
-
(2012)
Nature
, vol.491
, pp. 119-124
-
-
Jostins, L.1
Ripke, S.2
Weersma, R.K.3
Duerr, R.H.4
McGovern, D.P.5
Hui, K.Y.6
Lee, J.C.7
Schumm, L.P.8
Sharma, Y.9
Anderson, C.A.10
-
28
-
-
78751644734
-
Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts
-
Sato, T., J. H. van Es, H. J. Snippert, D. E. Stange, R. G. Vries, M. van den Born, N. Barker, N. F. Shroyer, M. van de Wetering, and H. Clevers. 2011. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469: 415-418.
-
(2011)
Nature
, vol.469
, pp. 415-418
-
-
Sato, T.1
Van Es, J.H.2
Snippert, H.J.3
Stange, D.E.4
Vries, R.G.5
Born Den M.Van6
Barker, N.7
Shroyer, N.F.8
Wetering De M.Van9
Clevers, H.10
-
29
-
-
70349916647
-
UNC-108/RAB-2 and its effector RIC-19 are involved in dense core vesicle maturation in Caenorhabditis elegans
-
Sumakovic, M., J. Hegermann, L. Luo, S. J. Husson, K. Schwarze, C. Olendrowitz, L. Schoofs, J. Richmond, and S. Eimer. 2009. UNC-108/RAB-2 and its effector RIC-19 are involved in dense core vesicle maturation in Caenorhabditis elegans. J. Cell Biol. 186: 897-914.
-
(2009)
J. Cell Biol
, vol.186
, pp. 897-914
-
-
Sumakovic, M.1
Hegermann, J.2
Luo, L.3
Husson, S.J.4
Schwarze, K.5
Olendrowitz, C.6
Schoofs, L.7
Richmond, J.8
Eimer, S.9
-
30
-
-
78649890151
-
Inhibition of RIP2s tyrosine kinase activity limits NOD2-driven cytokine responses
-
Tigno-Aranjuez, J. T., J. M. Asara, and D. W. Abbott. 2010. Inhibition of RIP2s tyrosine kinase activity limits NOD2-driven cytokine responses. Genes Dev. 24: 2666-2677.
-
(2010)
Genes Dev
, vol.24
, pp. 2666-2677
-
-
Tigno-Aranjuez, J.T.1
Asara, J.M.2
Abbott, D.W.3
-
31
-
-
76249120134
-
Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity
-
Clarke, T. B., K. M. Davis, E. S. Lysenko, A. Y. Zhou, Y. Yu, and J. N. Weiser. 2010. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16: 228-231.
-
(2010)
Nat. Med
, vol.16
, pp. 228-231
-
-
Clarke, T.B.1
Davis, K.M.2
Lysenko, E.S.3
Zhou, A.Y.4
Yu, Y.5
Weiser, J.N.6
-
32
-
-
84929966331
-
Immune modulation by bacterial outer membrane vesicles
-
Kaparakis-Liaskos, M., and R. L. Ferrero. 2015. Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 15: 375-387.
-
(2015)
Nat. Rev. Immunol
, vol.15
, pp. 375-387
-
-
Kaparakis-Liaskos, M.1
Ferrero, R.L.2
-
33
-
-
84899953763
-
Endosomes are specialized platforms for bacterial sensing and NOD2 signalling
-
Nakamura, N., J. R. Lill, Q. Phung, Z. Jiang, C. Bakalarski, A. de Mazière, J. Klumperman, M. Schlatter, L. Delamarre, and I. Mellman. 2014. Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509: 240-244.
-
(2014)
Nature
, vol.509
, pp. 240-244
-
-
Nakamura, N.1
Lill, J.R.2
Phung, Q.3
Jiang, Z.4
Bakalarski, C.5
De Mazière, A.6
Klumperman, J.7
Schlatter, M.8
Delamarre, L.9
Mellman, I.10
-
34
-
-
80053616405
-
The PepT1-NOD2 signaling pathway aggravates induced colitis in mice
-
Dalmasso, G., H. T. Nguyen, S. A. Ingersoll, S. Ayyadurai, H. Laroui, M. A. Charania, Y. Yan, S. V. Sitaraman, and D. Merlin. 2011. The PepT1-NOD2 signaling pathway aggravates induced colitis in mice. Gastroenterology 141: 1334-1345.
-
(2011)
Gastroenterology
, vol.141
, pp. 1334-1345
-
-
Dalmasso, G.1
Nguyen, H.T.2
Ingersoll, S.A.3
Ayyadurai, S.4
Laroui, H.5
Charania, M.A.6
Yan, Y.7
Sitaraman, S.V.8
Merlin, D.9
-
35
-
-
84884315797
-
The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release
-
Brain, O., B. M. Owens, T. Pichulik, P. Allan, E. Khatamzas, A. Leslie, T. Steevels, S. Sharma, A. Mayer, A. M. Catuneanu, et al. 2013. The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity 39: 521-536.
-
(2013)
Immunity
, vol.39
, pp. 521-536
-
-
Brain, O.1
Owens, B.M.2
Pichulik, T.3
Allan, P.4
Khatamzas, E.5
Leslie, A.6
Steevels, T.7
Sharma, S.8
Mayer, A.9
Catuneanu, A.M.10
-
36
-
-
84907597189
-
Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus
-
Ramanan, D., M. S. Tang, R. Bowcutt, P. Loke, and K. Cadwell. 2014. Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. Immunity 41: 311-324.
-
(2014)
Immunity
, vol.41
, pp. 311-324
-
-
Ramanan, D.1
Tang, M.S.2
Bowcutt, R.3
Loke, P.4
Cadwell, K.5
-
37
-
-
73849121209
-
Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
-
Travassos, L. H., L. A. Carneiro, M. Ramjeet, S. Hussey, Y. G. Kim, J. G. Magalhaes, L. Yuan, F. Soares, E. Chea, L. Le Bourhis, et al. 2010. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11: 55-62.
-
(2010)
Nat. Immunol
, vol.11
, pp. 55-62
-
-
Travassos, L.H.1
Carneiro, L.A.2
Ramjeet, M.3
Hussey, S.4
Kim, Y.G.5
Magalhaes, J.G.6
Yuan, L.7
Soares, F.8
Chea, E.9
Le Bourhis, L.10
-
38
-
-
84864094479
-
A dual role for receptor-interacting protein kinase 2 (RIP2) kinase activity in nucleotide-binding oligomerization domain 2 (NOD2)-dependent autophagy
-
Homer, C. R., A. Kabi, N. Marina-García, A. Sreekumar, A. I. Nesvizhskii, K. P. Nickerson, A. M. Chinnaiyan, G. Nunez, and C. McDonald. 2012. A dual role for receptor-interacting protein kinase 2 (RIP2) kinase activity in nucleotide-binding oligomerization domain 2 (NOD2)-dependent autophagy. J. Biol. Chem. 287: 25565-25576.
-
(2012)
J. Biol. Chem
, vol.287
, pp. 25565-25576
-
-
Homer, C.R.1
Kabi, A.2
Marina-García, N.3
Sreekumar, A.4
Nesvizhskii, A.I.5
Nickerson, K.P.6
Chinnaiyan, A.M.7
Nunez, G.8
McDonald, C.9
-
39
-
-
73849151394
-
NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
-
Cooney, R., J. Baker, O. Brain, B. Danis, T. Pichulik, P. Allan, D. J. Ferguson, B. J. Campbell, D. Jewell, and A. Simmons. 2010. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16: 90-97.
-
(2010)
Nat. Med
, vol.16
, pp. 90-97
-
-
Cooney, R.1
Baker, J.2
Brain, O.3
Danis, B.4
Pichulik, T.5
Allan, P.6
Ferguson, D.J.7
Campbell, B.J.8
Jewell, D.9
Simmons, A.10
-
40
-
-
84901025110
-
The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling
-
Irving, A. T., H. Mimuro, T. A. Kufer, C. Lo, R. Wheeler, L. J. Turner, B. J. Thomas, C. Malosse, M. P. Gantier, L. N. Casillas, et al. 2014. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe 15: 623-635.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 623-635
-
-
Irving, A.T.1
Mimuro, H.2
Kufer, T.A.3
Lo, C.4
Wheeler, R.5
Turner, L.J.6
Thomas, B.J.7
Malosse, C.8
Gantier, M.P.9
Casillas, L.N.10
-
41
-
-
84964425113
-
NOD1 and NOD2 signalling links ER stress with inflammation
-
Keestra-Gounder, A. M., M. X. Byndloss, N. Seyffert, B. M. Young, A. Chávez-Arroyo, A. Y. Tsai, S. A. Cevallos, M. G. Winter, O. H. Pham, C. R. Tiffany, et al. 2016. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532: 394-397.
-
(2016)
Nature
, vol.532
, pp. 394-397
-
-
Keestra-Gounder, A.M.1
Byndloss, M.X.2
Seyffert, N.3
Young, B.M.4
Chávez-Arroyo, A.5
Tsai, A.Y.6
Cevallos, S.A.7
Winter, M.G.8
Pham, O.H.9
Tiffany, C.R.10
-
42
-
-
84863000898
-
The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity
-
Damgaard, R. B., U. Nachbur, M. Yabal, W. W. Wong, B. K. Fiil, M. Kastirr, E. Rieser, J. A. Rickard, A. Bankovacki, C. Peschel, et al. 2012. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol. Cell 46: 746-758.
-
(2012)
Mol. Cell
, vol.46
, pp. 746-758
-
-
Damgaard, R.B.1
Nachbur, U.2
Yabal, M.3
Wong, W.W.4
Fiil, B.K.5
Kastirr, M.6
Rieser, E.7
Rickard, J.A.8
Bankovacki, A.9
Peschel, C.10
-
43
-
-
38549084725
-
A critical role of RICK/RIP2 polyubiquitination in Nodinduced NF-kappaB activation
-
Hasegawa, M., Y. Fujimoto, P. C. Lucas, H. Nakano, K. Fukase, G. Núnez, and N. Inohara. 2008. A critical role of RICK/RIP2 polyubiquitination in Nodinduced NF-kappaB activation. EMBO J. 27: 373-383.
-
(2008)
EMBO J
, vol.27
, pp. 373-383
-
-
Hasegawa, M.1
Fujimoto, Y.2
Lucas, P.C.3
Nakano, H.4
Fukase, K.5
Núnez, G.6
Inohara, N.7
-
44
-
-
66949138341
-
Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2
-
Bertrand, M. J., K. Doiron, K. Labbé, R. G. Korneluk, P. A. Barker, and M. Saleh. 2009. Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 30: 789-801.
-
(2009)
Immunity
, vol.30
, pp. 789-801
-
-
Bertrand, M.J.1
Doiron, K.2
Labbé, K.3
Korneluk, R.G.4
Barker, P.A.5
Saleh, M.6
-
45
-
-
0030863618
-
Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice
-
Garabedian, E. M., L. J. Roberts, M. S. McNevin, and J. I. Gordon. 1997. Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J. Biol. Chem. 272: 23729-23740.
-
(1997)
J. Biol. Chem
, vol.272
, pp. 23729-23740
-
-
Garabedian, E.M.1
Roberts, L.J.2
McNevin, M.S.3
Gordon, J.I.4
-
46
-
-
67349123408
-
Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
-
Sato, T., R. G. Vries, H. J. Snippert, M. van de Wetering, N. Barker, D. E. Stange, J. H. van Es, A. Abo, P. Kujala, P. J. Peters, and H. Clevers. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459: 262-265.
-
(2009)
Nature
, vol.459
, pp. 262-265
-
-
Sato, T.1
Vries, R.G.2
Snippert, H.J.3
Wetering De M.Van4
Barker, N.5
Stange, D.E.6
Van Es, J.H.7
Abo, A.8
Kujala, P.9
Peters, P.J.10
Clevers, H.11
-
47
-
-
78649489009
-
Genomewide meta-Analysis increases to 71 the number of confirmed Crohns disease susceptibility loci
-
Franke, A., D. P. McGovern, J. C. Barrett, K. Wang, G. L. Radford-Smith, T. Ahmad, C. W. Lees, T. Balschun, J. Lee, R. Roberts, et al. 2010. Genomewide meta-Analysis increases to 71 the number of confirmed Crohns disease susceptibility loci. Nat. Genet. 42: 1118-1125.
-
(2010)
Nat. Genet
, vol.42
, pp. 1118-1125
-
-
Franke, A.1
McGovern, D.P.2
Barrett, J.C.3
Wang, K.4
Radford-Smith, G.L.5
Ahmad, T.6
Lees, C.W.7
Balschun, T.8
Lee, J.9
Roberts, R.10
-
48
-
-
79952195585
-
Meta-Analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47
-
Anderson, C. A., G. Boucher, C. W. Lees, A. Franke, M. DAmato, K. D. Taylor, J. C. Lee, P. Goyette, M. Imielinski, A. Latiano, et al. 2011. Meta-Analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43: 246-252.
-
(2011)
Nat. Genet
, vol.43
, pp. 246-252
-
-
Anderson, C.A.1
Boucher, G.2
Lees, C.W.3
Franke, A.4
Damato, M.5
Taylor, K.D.6
Lee, J.C.7
Goyette, P.8
Imielinski, M.9
Latiano, A.10
|