메뉴 건너뛰기




Volumn 59, Issue 1, 2016, Pages 1-14

Nonnegative correlation coding for image classification

Author keywords

correlation coding; image classification; locality; nonnegativity; similarity

Indexed keywords

CODES (SYMBOLS); IMAGE CODING;

EID: 84953838027     PISSN: 1674733X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11432-015-5289-7     Document Type: Article
Times cited : (7)

References (35)
  • 2
    • 84894569115 scopus 로고    scopus 로고
    • Feature coding in image classification: a comprehensive study
    • Huang Y Z, Wu Z F, Wang L, et al. Feature coding in image classification: a comprehensive study. IEEE Trans Pattern Anal Mach Intel, 2013, 36: 493–506
    • (2013) IEEE Trans Pattern Anal Mach Intel , vol.36 , pp. 493-506
    • Huang, Y.Z.1    Wu, Z.F.2    Wang, L.3
  • 6
    • 84870191664 scopus 로고    scopus 로고
    • Laplacian sparse coding, hypergraph laplacian sparse coding, and applications
    • Gao S, Tsang I, Chia L, et al. Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Trans Pattern Anal Mach Intel, 2013, 35: 92–104
    • (2013) IEEE Trans Pattern Anal Mach Intel , vol.35 , pp. 92-104
    • Gao, S.1    Tsang, I.2    Chia, L.3
  • 7
    • 79955371363 scopus 로고    scopus 로고
    • Graph regularized sparse coding for image representation
    • Zheng M, Bu J, Chen C, et al. Graph regularized sparse coding for image representation. IEEE Trans Image Process, 2011, 20: 1327–1336
    • (2011) IEEE Trans Image Process , vol.20 , pp. 1327-1336
    • Zheng, M.1    Bu, J.2    Chen, C.3
  • 15
    • 0003882879 scopus 로고    scopus 로고
    • American Mathematical Society, Washington
    • Chung F R. Spectral Graph Theory. Washington DC: American Mathematical Society, 1997
    • (1997) Spectral Graph Theory
    • Chung, F.R.1
  • 17
    • 84872249563 scopus 로고    scopus 로고
    • Linear distance coding for image classification
    • Wang Z L, Feng J S, Yan S C, et al. Linear distance coding for image classification. IEEE Trans Image Process, 2013, 22: 537–548
    • (2013) IEEE Trans Image Process , vol.22 , pp. 537-548
    • Wang, Z.L.1    Feng, J.S.2    Yan, S.C.3
  • 19
    • 84897917530 scopus 로고    scopus 로고
    • Low-rank decomposition and Laplacian group sparse coding for image classification
    • Zhang L, Ma C. Low-rank decomposition and Laplacian group sparse coding for image classification. Neurocomputing, 2014, 135: 339–347
    • (2014) Neurocomputing , vol.135 , pp. 339-347
    • Zhang, L.1    Ma, C.2
  • 20
    • 0037780988 scopus 로고    scopus 로고
    • Modeling receptive fields with non-negative sparse coding
    • Hoyer P O. Modeling receptive fields with non-negative sparse coding. Neurocomputing, 2003, 52: 547–552
    • (2003) Neurocomputing , vol.52 , pp. 547-552
    • Hoyer, P.O.1
  • 22
    • 34548480020 scopus 로고
    • A method of solving a convex programming problem with convergence rate O(1/k2)
    • Nesterov Y. A method of solving a convex programming problem with convergence rate O(1/k2). Soviet Math Dok, 1983, 27: 372–376
    • (1983) Soviet Math Dok , vol.27 , pp. 372-376
    • Nesterov, Y.1
  • 24
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories
    • Li F F, Fergus R, Perona P, et al. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput Vis Image Underst, 2007, 106: 59–70
    • (2007) Comput Vis Image Underst , vol.106 , pp. 59-70
    • Li, F.F.1    Fergus, R.2    Perona, P.3
  • 26
    • 77951298115 scopus 로고    scopus 로고
    • The pascal visual object classes (voc) challenge
    • Everingham M, van Gool L, Williams C K I, et al. The pascal visual object classes (voc) challenge. Int J Comput Vis, 2010, 88: 303–338
    • (2010) Int J Comput Vis , vol.88 , pp. 303-338
    • Everingham, M.1    Gool, L.2    Williams, C.K.I.3
  • 27
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe D G. Distinctive image features from scale-invariant keypoints. Int J Comput Vis, 2004, 60: 91–110
    • (2004) Int J Comput Vis , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 28
    • 77953226691 scopus 로고    scopus 로고
    • Beyond the euclidean distance: creating effective visual codebooks using the histogram intersection kernel
    • Wu J, Rehg J M. Beyond the euclidean distance: creating effective visual codebooks using the histogram intersection kernel. In: Proceedings of the 12th Computer Vision Conference. Kyoto: IEEE, 2009. 630–637
    • (2009) Proceedings of the 12th Computer Vision Conference. Kyoto: IEEE , pp. 630-637
    • Wu, J.1    Rehg, J.M.2
  • 32
    • 84899630716 scopus 로고    scopus 로고
    • Image classification by non-negative sparse coding, correlation constrained low-rank and sparse decomposition
    • Zhang C J, Liu J, Liang C, et al. Image classification by non-negative sparse coding, correlation constrained low-rank and sparse decomposition. Comput Vis Image Underst, 2014, 123: 14–22
    • (2014) Comput Vis Image Underst , vol.123 , pp. 14-22
    • Zhang, C.J.1    Liu, J.2    Liang, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.