-
1
-
-
84905266057
-
Dynamic churn prediction framework with more effective use of rare event data: the case of private banking
-
[1] Ali, O., Ariturk, U., Dynamic churn prediction framework with more effective use of rare event data: the case of private banking. Expert Syst. Appl. 41:17 (2014), 7889–7903.
-
(2014)
Expert Syst. Appl.
, vol.41
, Issue.17
, pp. 7889-7903
-
-
Ali, O.1
Ariturk, U.2
-
2
-
-
84891807032
-
MWMOTE-Majority weighted minority oversampling technique for imbalanced data set learning
-
[2] Barua, S., Islam, M., Yao, X., MWMOTE-Majority weighted minority oversampling technique for imbalanced data set learning. IEEE Trans. Knowl. Data Eng. 26:2 (2014), 405–425.
-
(2014)
IEEE Trans. Knowl. Data Eng.
, vol.26
, Issue.2
, pp. 405-425
-
-
Barua, S.1
Islam, M.2
Yao, X.3
-
3
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
[3] Batista, G.E., Prati, R.C., Monard, M.C., A study of the behavior of several methods for balancing machine learning training data. ACM Sigkdd Explorations Newsletter 6:1 (2004), 20–29.
-
(2004)
ACM Sigkdd Explorations Newsletter
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.1
Prati, R.C.2
Monard, M.C.3
-
4
-
-
58349098976
-
Handling class imbalance in customer churn prediction
-
[4] Burez, J., Poel, D.V.d., Handling class imbalance in customer churn prediction. Expert Syst Appl 36:3, Part 1 (2009), 4626–4636.
-
(2009)
Expert Syst Appl
, vol.36
, Issue.3
, pp. 4626-4636
-
-
Burez, J.1
Poel, D.V.D.2
-
5
-
-
0346586663
-
SMOTE: syntheticminority over-sampling technique
-
[5] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., SMOTE: syntheticminority over-sampling technique. J. Artif. Intell. Res. 16:3 (2002), 321–357.
-
(2002)
J. Artif. Intell. Res.
, vol.16
, Issue.3
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
6
-
-
9444297357
-
SMOTEBoost: improving prediction of the minority class in boosting
-
[6] Chawla, N., Lazarevic, A., Hall, L., Bowyer, K.W., SMOTEBoost: improving prediction of the minority class in boosting. Proceeding of PKDD, 2003, 107–119.
-
(2003)
Proceeding of PKDD
, pp. 107-119
-
-
Chawla, N.1
Lazarevic, A.2
Hall, L.3
Bowyer, K.W.4
-
7
-
-
84864609860
-
A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data
-
[7] Chen, Z., Fan, Z., Sun, M., A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data. Eur. J. Oper. Res. 223:2 (2012), 461–472.
-
(2012)
Eur. J. Oper. Res.
, vol.223
, Issue.2
, pp. 461-472
-
-
Chen, Z.1
Fan, Z.2
Sun, M.3
-
8
-
-
20444392475
-
-
Statistics Department of University of California at Berkeley Technical report
-
[8] Chen, C., Liaw, A., Breiman, L., Using Random Forests to Learn Imbalanced Data, 2004, Statistics Department of University of California at Berkeley Technical report.
-
(2004)
Using Random Forests to Learn Imbalanced Data
-
-
Chen, C.1
Liaw, A.2
Breiman, L.3
-
9
-
-
23044520403
-
Implementing a customer relationship strategy: the asymmetric impact of poor versus excellent execution
-
[9] Colgate, M., Danaher, P., Implementing a customer relationship strategy: the asymmetric impact of poor versus excellent execution. J. Acad. Market. Sci. 28:3 (2000), 375–387.
-
(2000)
J. Acad. Market. Sci.
, vol.28
, Issue.3
, pp. 375-387
-
-
Colgate, M.1
Danaher, P.2
-
10
-
-
85027912236
-
A comparative analysis of data preparation algorithms for customer churn prediction: a case study in the telecommunication industry
-
Online first.
-
[10] Coussement, K., Lessmann, S., Verstraeten, G., A comparative analysis of data preparation algorithms for customer churn prediction: a case study in the telecommunication industry. Decis. Support Syst., 2016 Online first.
-
(2016)
Decis. Support Syst.
-
-
Coussement, K.1
Lessmann, S.2
Verstraeten, G.3
-
11
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
[11] sar, J.D., Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006), 1–30.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
sar, J.D.1
-
12
-
-
63449090301
-
Learning on the border: active learning in imbalanced data classification
-
[12] Ertekin, S., Huang, J., Bottou, L., Giles, C.L., Learning on the border: active learning in imbalanced data classification. Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, ACM, 2007, 127–136.
-
(2007)
Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, ACM
, pp. 127-136
-
-
Ertekin, S.1
Huang, J.2
Bottou, L.3
Giles, C.L.4
-
13
-
-
80052394779
-
On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
-
[13] V. García, V., Sànchez, J.S., Mollineda, R., On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl. Based Syst. 25:1 (2012), 13–21.
-
(2012)
Knowl. Based Syst.
, vol.25
, Issue.1
, pp. 13-21
-
-
V. García, V.1
Sànchez, J.S.2
Mollineda, R.3
-
14
-
-
70349617264
-
Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy
-
[14] García, S., Herrera, F., Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy. Evolut. Comput. 17:3 (2009), 275–306.
-
(2009)
Evolut. Comput.
, vol.17
, Issue.3
, pp. 275-306
-
-
García, S.1
Herrera, F.2
-
15
-
-
84962359556
-
Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets
-
[15] Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets. Inf. Sci. (Ny) 354 (2016), 178–196.
-
(2016)
Inf. Sci. (Ny)
, vol.354
, pp. 178-196
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
16
-
-
84862515469
-
A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches
-
[16] Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C 41:4 (2012), 463–484.
-
(2012)
IEEE Trans. Syst. Man Cybern. Part C
, vol.41
, Issue.4
, pp. 463-484
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
18
-
-
56349089205
-
ADASYN: adaptive synthetic sampling approach for imbalanced learning
-
[18] He, H., Bai, Y., Garcia, E.A., Li, S., ADASYN: adaptive synthetic sampling approach for imbalanced learning. Proceedings of IEEE International Joint Conference on Neural Networks, 2008, 1322–1328.
-
(2008)
Proceedings of IEEE International Joint Conference on Neural Networks
, pp. 1322-1328
-
-
He, H.1
Bai, Y.2
Garcia, E.A.3
Li, S.4
-
19
-
-
77950294204
-
Roughly balanced bagging for imbalanced data
-
[19] Hido, S., Kashima, H., Takahashi, Y., Roughly balanced bagging for imbalanced data. Stat. Anal. Data Min. 2:5-6 (2009), 412–426.
-
(2009)
Stat. Anal. Data Min.
, vol.2
, Issue.5-6
, pp. 412-426
-
-
Hido, S.1
Kashima, H.2
Takahashi, Y.3
-
20
-
-
84870060529
-
Churn prediction in telecom using random forest and PSO based data balancing in combination with various feature selection strategies
-
[20] Idris, A., Rizwan, M., Khan, A., Churn prediction in telecom using random forest and PSO based data balancing in combination with various feature selection strategies. Comput. Elect. Eng. 38:6 (2012), 1808–1819.
-
(2012)
Comput. Elect. Eng.
, vol.38
, Issue.6
, pp. 1808-1819
-
-
Idris, A.1
Rizwan, M.2
Khan, A.3
-
21
-
-
84909998420
-
Managing b2b customer churn, retention and profitability
-
[21] Jahromi, A., Stakhovych, S., Ewing, M., Managing b2b customer churn, retention and profitability. Ind. Market. Manage. 43:7 (2014), 1258–1268.
-
(2014)
Ind. Market. Manage.
, vol.43
, Issue.7
, pp. 1258-1268
-
-
Jahromi, A.1
Stakhovych, S.2
Ewing, M.3
-
22
-
-
84908455652
-
Improved churn prediction in telecommunication industry using data mining techniques
-
[22] Keramati, A., Jafari-Marandi, R., Aliannejadi, M., Ahmadian, I., Mozaffari, M., Abbasi, U., Improved churn prediction in telecommunication industry using data mining techniques. Appl. Soft Comput. 24 (2014), 994–1012.
-
(2014)
Appl. Soft Comput.
, vol.24
, pp. 994-1012
-
-
Keramati, A.1
Jafari-Marandi, R.2
Aliannejadi, M.3
Ahmadian, I.4
Mozaffari, M.5
Abbasi, U.6
-
24
-
-
79955476240
-
Comparing boosting and bagging techniques with noisy and imbalanced data
-
[24] Khoshgoftaar, T.M., Hulse, J.V., Napolitano, A., Comparing boosting and bagging techniques with noisy and imbalanced data. IEEE Trans. Syst. Man Cybern. Part A 99 (2010), 1–17.
-
(2010)
IEEE Trans. Syst. Man Cybern. Part A
, vol.99
, pp. 1-17
-
-
Khoshgoftaar, T.M.1
Hulse, J.V.2
Napolitano, A.3
-
25
-
-
33744526493
-
Bagging and boosting classification trees to predict churn
-
[25] Lemmens, A., Croux, C., Bagging and boosting classification trees to predict churn. J. Market. Res. (JMR) 43 (2006), 276–286.
-
(2006)
J. Market. Res. (JMR)
, vol.43
, pp. 276-286
-
-
Lemmens, A.1
Croux, C.2
-
26
-
-
64049108468
-
Exploratory undersampling for class-imbalance learning
-
[26] X, L., Wu, J., Zhou, Z., Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B 39:2 (2009), 539–550.
-
(2009)
IEEE Trans. Syst. Man Cybern. Part B
, vol.39
, Issue.2
, pp. 539-550
-
-
Wu, J.1
Zhou, Z.2
-
27
-
-
84856964446
-
Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification, open problems on intrinsic data characteristics
-
[27] López, V., Fernández, A., Moreno-Torres, J.G., Herrera, F., Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification, open problems on intrinsic data characteristics. Expert Syst. Appl. 39:7 (2012), 6585–6608.
-
(2012)
Expert Syst. Appl.
, vol.39
, Issue.7
, pp. 6585-6608
-
-
López, V.1
Fernández, A.2
Moreno-Torres, J.G.3
Herrera, F.4
-
28
-
-
84883447718
-
An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics
-
[28] López, V., Fernández, A., García, S., Palade, V., Herrera, F., An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. (Ny) 250 (2013), 113–141.
-
(2013)
Inf. Sci. (Ny)
, vol.250
, pp. 113-141
-
-
López, V.1
Fernández, A.2
García, S.3
Palade, V.4
Herrera, F.5
-
29
-
-
33744509693
-
Detection defection: measuring and understanding the predictive accuracy of customer churn models
-
[29] Neslin, S., Gupta, S., Kamakura, W., Lu, J., Mason, C., Detection defection: measuring and understanding the predictive accuracy of customer churn models. J. Market. Res. 43:2 (2006), 204–211.
-
(2006)
J. Market. Res.
, vol.43
, Issue.2
, pp. 204-211
-
-
Neslin, S.1
Gupta, S.2
Kamakura, W.3
Lu, J.4
Mason, C.5
-
30
-
-
84885636932
-
Learning from imbalanced data: evaluation matters
-
Data Mining: Found. Intell. Paradigms Springer
-
[30] Raeder, T., Forman, G., Chawla, N.V., Learning from imbalanced data: evaluation matters. 2012, Data Mining: Found. Intell. Paradigms Springer, 315–331.
-
(2012)
, pp. 315-331
-
-
Raeder, T.1
Forman, G.2
Chawla, N.V.3
-
31
-
-
84883450766
-
An empirical study of the classification performance of learners on imbalanced and noisy software quality data
-
[31] Seiffert, C., Khoshgoftaar, T.M., Hulse, J.V., Folleco, A., An empirical study of the classification performance of learners on imbalanced and noisy software quality data. Inf. Sci. (Ny) 259 (2014), 571–595.
-
(2014)
Inf. Sci. (Ny)
, vol.259
, pp. 571-595
-
-
Seiffert, C.1
Khoshgoftaar, T.M.2
Hulse, J.V.3
Folleco, A.4
-
32
-
-
72949118881
-
RUSBOost: a hybrid approach to alleviating class imbalance
-
[32] Seiffert, C., Khoshgoftaar, T.M., Hulse, J.V., RUSBOost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A 40:1 (2010), 185–197.
-
(2010)
IEEE Trans. Syst. Man Cybern. Part A
, vol.40
, Issue.1
, pp. 185-197
-
-
Seiffert, C.1
Khoshgoftaar, T.M.2
Hulse, J.V.3
-
33
-
-
14044252742
-
One-class support vector machines-an application in machine fault detection and classification
-
[33] Shin, H.J., Eom, D.H., Kim, S.S., One-class support vector machines-an application in machine fault detection and classification. Comput. Ind. Eng. 48:2 (2005), 395–408.
-
(2005)
Comput. Ind. Eng.
, vol.48
, Issue.2
, pp. 395-408
-
-
Shin, H.J.1
Eom, D.H.2
Kim, S.S.3
-
34
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
[34] Sun, Y., Kamel, M.S., Wong, A.K., Wang, Y., Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 40:12 (2007), 3358–3378.
-
(2007)
Pattern Recognit.
, vol.40
, Issue.12
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.3
Wang, Y.4
-
35
-
-
84921817000
-
A novel ensemble method for classifying imbalanced data
-
[35] Sun, Z., Song, Q., Zhu, X., Sun, H., X., B., Zhou, Y., A novel ensemble method for classifying imbalanced data. Pattern Recognit. 48:5 (2015), 1623–1637.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.5
, pp. 1623-1637
-
-
Sun, Z.1
Song, Q.2
Zhu, X.3
Sun, H.4
Zhou, Y.5
-
36
-
-
69249209759
-
Customer churn prediction by hybrid neural networks
-
[36] Tsai, C., Lu, Y., Customer churn prediction by hybrid neural networks. Expert Syst. Appl. 36:10 (2009), 12547–12553.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.10
, pp. 12547-12553
-
-
Tsai, C.1
Lu, Y.2
-
37
-
-
0036565589
-
An instance-weighting method to induce cost-sensitive trees
-
[37] Ting, K.M., An instance-weighting method to induce cost-sensitive trees. IEEE Trans. Knowl. Data Eng. 14:3 (2002), 659–665.
-
(2002)
IEEE Trans. Knowl. Data Eng.
, vol.14
, Issue.3
, pp. 659-665
-
-
Ting, K.M.1
-
38
-
-
58349090428
-
Cluster-based under-sampling approaches for imbalanced data distributions
-
[38] Yen, S.J., Lee, Y.S., Cluster-based under-sampling approaches for imbalanced data distributions. Expert Syst. Appl. 36:3 (2009), 5718–5727.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.3
, pp. 5718-5727
-
-
Yen, S.J.1
Lee, Y.S.2
-
39
-
-
84856230447
-
Predicting customer churn through interpersonal influence
-
[39] Zhang, X., Zhu, J., Xu, S., Wan, Y., Predicting customer churn through interpersonal influence. Knowl.-Based Syst. 28 (2012), 97–104.
-
(2012)
Knowl.-Based Syst.
, vol.28
, pp. 97-104
-
-
Zhang, X.1
Zhu, J.2
Xu, S.3
Wan, Y.4
-
40
-
-
85014521443
-
Benchmarking sampling techniques for imbalance learning in churn prediction
-
Online first.
-
[40] Zhu, B., Baesens, B., Backiel, A., Broucke, S.v., Benchmarking sampling techniques for imbalance learning in churn prediction. J. Operat. Res. Soc., 2017, 10.1057/s41274-016-0176-1 Online first.
-
(2017)
J. Operat. Res. Soc.
-
-
Zhu, B.1
Baesens, B.2
Backiel, A.3
Broucke, S.V.4
-
41
-
-
34547995826
-
Experimental perspectives on learning from imbalanced data
-
[41] Hulse, J.V., Khoshgoftaar, T.M., Napolitano, A., Experimental perspectives on learning from imbalanced data. Proceedings of the 24th International Conference on Machine learning, 2007, 935–942.
-
(2007)
Proceedings of the 24th International Conference on Machine learning
, pp. 935-942
-
-
Hulse, J.V.1
Khoshgoftaar, T.M.2
Napolitano, A.3
-
42
-
-
83955164226
-
New insights into churn prediction in the telecommunication sector: a profit driven data mining approach
-
[42] Verbeke, W., Dejaeger, K., Martens, D., Hur, J., Baesens, B., New insights into churn prediction in the telecommunication sector: a profit driven data mining approach. Eur. J. Oper. Res. 218:1 (2012), 211–229.
-
(2012)
Eur. J. Oper. Res.
, vol.218
, Issue.1
, pp. 211-229
-
-
Verbeke, W.1
Dejaeger, K.2
Martens, D.3
Hur, J.4
Baesens, B.5
-
43
-
-
84875709296
-
A novel profit maximizing metric for measuring classification performance of customer churn prediction models
-
[43] Verbraken, T., Verbeke, W., Baesens, B., A novel profit maximizing metric for measuring classification performance of customer churn prediction models. IEEE Trans. Knowl. Data Eng. 25:5 (2013), 961–973.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.5
, pp. 961-973
-
-
Verbraken, T.1
Verbeke, W.2
Baesens, B.3
-
44
-
-
0002648330
-
Controlling the sensitivity of support vector machines
-
[44] Veropoulos, K., Campbell, C., Cristianini, N., Controlling the sensitivity of support vector machines. Proceedings of the international joint conference on AI, 1999, 55–60.
-
(1999)
Proceedings of the international joint conference on AI
, pp. 55-60
-
-
Veropoulos, K.1
Campbell, C.2
Cristianini, N.3
-
45
-
-
67650505046
-
Diversity analysis on imbalanced data sets by using ensemble models
-
[45] Wang, S., Yao, X., Diversity analysis on imbalanced data sets by using ensemble models. IEEE Symposium on Computational Intelligence, 2009, 324–331.
-
(2009)
IEEE Symposium on Computational Intelligence
, pp. 324-331
-
-
Wang, S.1
Yao, X.2
-
46
-
-
58349116623
-
Customer churn prediction using improved balanced random forests
-
[46] Xie, Y., Li, X., Ngai, E., Ying, M., Customer churn prediction using improved balanced random forests. Expert Syst. Appl. 36:3, Part 1 (2009), 5445–5449.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.3
, pp. 5445-5449
-
-
Xie, Y.1
Li, X.2
Ngai, E.3
Ying, M.4
|