메뉴 건너뛰기




Volumn 408, Issue , 2017, Pages 84-99

An empirical comparison of techniques for the class imbalance problem in churn prediction

Author keywords

Benchmark experiment; Churn prediction; Class imbalance; Expected maximum profit measure

Indexed keywords

COST BENEFIT ANALYSIS; PROFITABILITY;

EID: 85018384906     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2017.04.015     Document Type: Article
Times cited : (137)

References (46)
  • 1
    • 84905266057 scopus 로고    scopus 로고
    • Dynamic churn prediction framework with more effective use of rare event data: the case of private banking
    • [1] Ali, O., Ariturk, U., Dynamic churn prediction framework with more effective use of rare event data: the case of private banking. Expert Syst. Appl. 41:17 (2014), 7889–7903.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.17 , pp. 7889-7903
    • Ali, O.1    Ariturk, U.2
  • 2
    • 84891807032 scopus 로고    scopus 로고
    • MWMOTE-Majority weighted minority oversampling technique for imbalanced data set learning
    • [2] Barua, S., Islam, M., Yao, X., MWMOTE-Majority weighted minority oversampling technique for imbalanced data set learning. IEEE Trans. Knowl. Data Eng. 26:2 (2014), 405–425.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.2 , pp. 405-425
    • Barua, S.1    Islam, M.2    Yao, X.3
  • 3
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • [3] Batista, G.E., Prati, R.C., Monard, M.C., A study of the behavior of several methods for balancing machine learning training data. ACM Sigkdd Explorations Newsletter 6:1 (2004), 20–29.
    • (2004) ACM Sigkdd Explorations Newsletter , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.1    Prati, R.C.2    Monard, M.C.3
  • 4
    • 58349098976 scopus 로고    scopus 로고
    • Handling class imbalance in customer churn prediction
    • [4] Burez, J., Poel, D.V.d., Handling class imbalance in customer churn prediction. Expert Syst Appl 36:3, Part 1 (2009), 4626–4636.
    • (2009) Expert Syst Appl , vol.36 , Issue.3 , pp. 4626-4636
    • Burez, J.1    Poel, D.V.D.2
  • 6
    • 9444297357 scopus 로고    scopus 로고
    • SMOTEBoost: improving prediction of the minority class in boosting
    • [6] Chawla, N., Lazarevic, A., Hall, L., Bowyer, K.W., SMOTEBoost: improving prediction of the minority class in boosting. Proceeding of PKDD, 2003, 107–119.
    • (2003) Proceeding of PKDD , pp. 107-119
    • Chawla, N.1    Lazarevic, A.2    Hall, L.3    Bowyer, K.W.4
  • 7
    • 84864609860 scopus 로고    scopus 로고
    • A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data
    • [7] Chen, Z., Fan, Z., Sun, M., A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data. Eur. J. Oper. Res. 223:2 (2012), 461–472.
    • (2012) Eur. J. Oper. Res. , vol.223 , Issue.2 , pp. 461-472
    • Chen, Z.1    Fan, Z.2    Sun, M.3
  • 9
    • 23044520403 scopus 로고    scopus 로고
    • Implementing a customer relationship strategy: the asymmetric impact of poor versus excellent execution
    • [9] Colgate, M., Danaher, P., Implementing a customer relationship strategy: the asymmetric impact of poor versus excellent execution. J. Acad. Market. Sci. 28:3 (2000), 375–387.
    • (2000) J. Acad. Market. Sci. , vol.28 , Issue.3 , pp. 375-387
    • Colgate, M.1    Danaher, P.2
  • 10
    • 85027912236 scopus 로고    scopus 로고
    • A comparative analysis of data preparation algorithms for customer churn prediction: a case study in the telecommunication industry
    • Online first.
    • [10] Coussement, K., Lessmann, S., Verstraeten, G., A comparative analysis of data preparation algorithms for customer churn prediction: a case study in the telecommunication industry. Decis. Support Syst., 2016 Online first.
    • (2016) Decis. Support Syst.
    • Coussement, K.1    Lessmann, S.2    Verstraeten, G.3
  • 11
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • [11] sar, J.D., Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006), 1–30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • sar, J.D.1
  • 13
    • 80052394779 scopus 로고    scopus 로고
    • On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
    • [13] V. García, V., Sànchez, J.S., Mollineda, R., On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl. Based Syst. 25:1 (2012), 13–21.
    • (2012) Knowl. Based Syst. , vol.25 , Issue.1 , pp. 13-21
    • V. García, V.1    Sànchez, J.S.2    Mollineda, R.3
  • 14
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy
    • [14] García, S., Herrera, F., Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy. Evolut. Comput. 17:3 (2009), 275–306.
    • (2009) Evolut. Comput. , vol.17 , Issue.3 , pp. 275-306
    • García, S.1    Herrera, F.2
  • 15
    • 84962359556 scopus 로고    scopus 로고
    • Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets
    • [15] Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets. Inf. Sci. (Ny) 354 (2016), 178–196.
    • (2016) Inf. Sci. (Ny) , vol.354 , pp. 178-196
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 16
    • 84862515469 scopus 로고    scopus 로고
    • A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches
    • [16] Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C 41:4 (2012), 463–484.
    • (2012) IEEE Trans. Syst. Man Cybern. Part C , vol.41 , Issue.4 , pp. 463-484
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 19
    • 77950294204 scopus 로고    scopus 로고
    • Roughly balanced bagging for imbalanced data
    • [19] Hido, S., Kashima, H., Takahashi, Y., Roughly balanced bagging for imbalanced data. Stat. Anal. Data Min. 2:5-6 (2009), 412–426.
    • (2009) Stat. Anal. Data Min. , vol.2 , Issue.5-6 , pp. 412-426
    • Hido, S.1    Kashima, H.2    Takahashi, Y.3
  • 20
    • 84870060529 scopus 로고    scopus 로고
    • Churn prediction in telecom using random forest and PSO based data balancing in combination with various feature selection strategies
    • [20] Idris, A., Rizwan, M., Khan, A., Churn prediction in telecom using random forest and PSO based data balancing in combination with various feature selection strategies. Comput. Elect. Eng. 38:6 (2012), 1808–1819.
    • (2012) Comput. Elect. Eng. , vol.38 , Issue.6 , pp. 1808-1819
    • Idris, A.1    Rizwan, M.2    Khan, A.3
  • 21
    • 84909998420 scopus 로고    scopus 로고
    • Managing b2b customer churn, retention and profitability
    • [21] Jahromi, A., Stakhovych, S., Ewing, M., Managing b2b customer churn, retention and profitability. Ind. Market. Manage. 43:7 (2014), 1258–1268.
    • (2014) Ind. Market. Manage. , vol.43 , Issue.7 , pp. 1258-1268
    • Jahromi, A.1    Stakhovych, S.2    Ewing, M.3
  • 25
    • 33744526493 scopus 로고    scopus 로고
    • Bagging and boosting classification trees to predict churn
    • [25] Lemmens, A., Croux, C., Bagging and boosting classification trees to predict churn. J. Market. Res. (JMR) 43 (2006), 276–286.
    • (2006) J. Market. Res. (JMR) , vol.43 , pp. 276-286
    • Lemmens, A.1    Croux, C.2
  • 26
    • 64049108468 scopus 로고    scopus 로고
    • Exploratory undersampling for class-imbalance learning
    • [26] X, L., Wu, J., Zhou, Z., Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B 39:2 (2009), 539–550.
    • (2009) IEEE Trans. Syst. Man Cybern. Part B , vol.39 , Issue.2 , pp. 539-550
    • Wu, J.1    Zhou, Z.2
  • 27
    • 84856964446 scopus 로고    scopus 로고
    • Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification, open problems on intrinsic data characteristics
    • [27] López, V., Fernández, A., Moreno-Torres, J.G., Herrera, F., Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification, open problems on intrinsic data characteristics. Expert Syst. Appl. 39:7 (2012), 6585–6608.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.7 , pp. 6585-6608
    • López, V.1    Fernández, A.2    Moreno-Torres, J.G.3    Herrera, F.4
  • 28
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics
    • [28] López, V., Fernández, A., García, S., Palade, V., Herrera, F., An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. (Ny) 250 (2013), 113–141.
    • (2013) Inf. Sci. (Ny) , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 29
    • 33744509693 scopus 로고    scopus 로고
    • Detection defection: measuring and understanding the predictive accuracy of customer churn models
    • [29] Neslin, S., Gupta, S., Kamakura, W., Lu, J., Mason, C., Detection defection: measuring and understanding the predictive accuracy of customer churn models. J. Market. Res. 43:2 (2006), 204–211.
    • (2006) J. Market. Res. , vol.43 , Issue.2 , pp. 204-211
    • Neslin, S.1    Gupta, S.2    Kamakura, W.3    Lu, J.4    Mason, C.5
  • 30
    • 84885636932 scopus 로고    scopus 로고
    • Learning from imbalanced data: evaluation matters
    • Data Mining: Found. Intell. Paradigms Springer
    • [30] Raeder, T., Forman, G., Chawla, N.V., Learning from imbalanced data: evaluation matters. 2012, Data Mining: Found. Intell. Paradigms Springer, 315–331.
    • (2012) , pp. 315-331
    • Raeder, T.1    Forman, G.2    Chawla, N.V.3
  • 31
    • 84883450766 scopus 로고    scopus 로고
    • An empirical study of the classification performance of learners on imbalanced and noisy software quality data
    • [31] Seiffert, C., Khoshgoftaar, T.M., Hulse, J.V., Folleco, A., An empirical study of the classification performance of learners on imbalanced and noisy software quality data. Inf. Sci. (Ny) 259 (2014), 571–595.
    • (2014) Inf. Sci. (Ny) , vol.259 , pp. 571-595
    • Seiffert, C.1    Khoshgoftaar, T.M.2    Hulse, J.V.3    Folleco, A.4
  • 33
    • 14044252742 scopus 로고    scopus 로고
    • One-class support vector machines-an application in machine fault detection and classification
    • [33] Shin, H.J., Eom, D.H., Kim, S.S., One-class support vector machines-an application in machine fault detection and classification. Comput. Ind. Eng. 48:2 (2005), 395–408.
    • (2005) Comput. Ind. Eng. , vol.48 , Issue.2 , pp. 395-408
    • Shin, H.J.1    Eom, D.H.2    Kim, S.S.3
  • 34
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • [34] Sun, Y., Kamel, M.S., Wong, A.K., Wang, Y., Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 40:12 (2007), 3358–3378.
    • (2007) Pattern Recognit. , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.3    Wang, Y.4
  • 35
    • 84921817000 scopus 로고    scopus 로고
    • A novel ensemble method for classifying imbalanced data
    • [35] Sun, Z., Song, Q., Zhu, X., Sun, H., X., B., Zhou, Y., A novel ensemble method for classifying imbalanced data. Pattern Recognit. 48:5 (2015), 1623–1637.
    • (2015) Pattern Recognit. , vol.48 , Issue.5 , pp. 1623-1637
    • Sun, Z.1    Song, Q.2    Zhu, X.3    Sun, H.4    Zhou, Y.5
  • 36
    • 69249209759 scopus 로고    scopus 로고
    • Customer churn prediction by hybrid neural networks
    • [36] Tsai, C., Lu, Y., Customer churn prediction by hybrid neural networks. Expert Syst. Appl. 36:10 (2009), 12547–12553.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.10 , pp. 12547-12553
    • Tsai, C.1    Lu, Y.2
  • 37
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • [37] Ting, K.M., An instance-weighting method to induce cost-sensitive trees. IEEE Trans. Knowl. Data Eng. 14:3 (2002), 659–665.
    • (2002) IEEE Trans. Knowl. Data Eng. , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 38
    • 58349090428 scopus 로고    scopus 로고
    • Cluster-based under-sampling approaches for imbalanced data distributions
    • [38] Yen, S.J., Lee, Y.S., Cluster-based under-sampling approaches for imbalanced data distributions. Expert Syst. Appl. 36:3 (2009), 5718–5727.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.3 , pp. 5718-5727
    • Yen, S.J.1    Lee, Y.S.2
  • 39
    • 84856230447 scopus 로고    scopus 로고
    • Predicting customer churn through interpersonal influence
    • [39] Zhang, X., Zhu, J., Xu, S., Wan, Y., Predicting customer churn through interpersonal influence. Knowl.-Based Syst. 28 (2012), 97–104.
    • (2012) Knowl.-Based Syst. , vol.28 , pp. 97-104
    • Zhang, X.1    Zhu, J.2    Xu, S.3    Wan, Y.4
  • 40
    • 85014521443 scopus 로고    scopus 로고
    • Benchmarking sampling techniques for imbalance learning in churn prediction
    • Online first.
    • [40] Zhu, B., Baesens, B., Backiel, A., Broucke, S.v., Benchmarking sampling techniques for imbalance learning in churn prediction. J. Operat. Res. Soc., 2017, 10.1057/s41274-016-0176-1 Online first.
    • (2017) J. Operat. Res. Soc.
    • Zhu, B.1    Baesens, B.2    Backiel, A.3    Broucke, S.V.4
  • 42
    • 83955164226 scopus 로고    scopus 로고
    • New insights into churn prediction in the telecommunication sector: a profit driven data mining approach
    • [42] Verbeke, W., Dejaeger, K., Martens, D., Hur, J., Baesens, B., New insights into churn prediction in the telecommunication sector: a profit driven data mining approach. Eur. J. Oper. Res. 218:1 (2012), 211–229.
    • (2012) Eur. J. Oper. Res. , vol.218 , Issue.1 , pp. 211-229
    • Verbeke, W.1    Dejaeger, K.2    Martens, D.3    Hur, J.4    Baesens, B.5
  • 43
    • 84875709296 scopus 로고    scopus 로고
    • A novel profit maximizing metric for measuring classification performance of customer churn prediction models
    • [43] Verbraken, T., Verbeke, W., Baesens, B., A novel profit maximizing metric for measuring classification performance of customer churn prediction models. IEEE Trans. Knowl. Data Eng. 25:5 (2013), 961–973.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.5 , pp. 961-973
    • Verbraken, T.1    Verbeke, W.2    Baesens, B.3
  • 45
    • 67650505046 scopus 로고    scopus 로고
    • Diversity analysis on imbalanced data sets by using ensemble models
    • [45] Wang, S., Yao, X., Diversity analysis on imbalanced data sets by using ensemble models. IEEE Symposium on Computational Intelligence, 2009, 324–331.
    • (2009) IEEE Symposium on Computational Intelligence , pp. 324-331
    • Wang, S.1    Yao, X.2
  • 46
    • 58349116623 scopus 로고    scopus 로고
    • Customer churn prediction using improved balanced random forests
    • [46] Xie, Y., Li, X., Ngai, E., Ying, M., Customer churn prediction using improved balanced random forests. Expert Syst. Appl. 36:3, Part 1 (2009), 5445–5449.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.3 , pp. 5445-5449
    • Xie, Y.1    Li, X.2    Ngai, E.3    Ying, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.