메뉴 건너뛰기




Volumn 37, Issue 8, 2017, Pages

FBXL5 inactivation in mouse brain induces aberrant proliferation of neural stem progenitor cells

Author keywords

Brain development; Iron regulation; Ligase; mTOR; Neural stem cell; Oxidative stress; SCF complex; Ubiquitination

Indexed keywords

F BOX AND LEUCINE RICH REPEAT PROTEIN 5; FERRIC ION; FERROUS ION; IRON REGULATORY PROTEIN 2; MAMMALIAN TARGET OF RAPAMYCIN; NESTIN; REACTIVE OXYGEN METABOLITE; UBIQUITIN PROTEIN LIGASE; UNCLASSIFIED DRUG; F BOX PROTEIN; FBXL5 PROTEIN, MOUSE; IRON; TARGET OF RAPAMYCIN KINASE;

EID: 85017143987     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00470-16     Document Type: Article
Times cited : (15)

References (54)
  • 1
    • 17144378216 scopus 로고    scopus 로고
    • Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis
    • Rouault TA, Tong WH. 2005. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 6:345-351. https://doi.org/10.1038/nrm1620.
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 345-351
    • Rouault, T.A.1    Tong, W.H.2
  • 2
    • 77954249308 scopus 로고    scopus 로고
    • Two to tango: regulation of mammalian iron metabolism
    • Hentze MW, Muckenthaler MU, Galy B, Camaschella C. 2010. Two to tango: regulation of mammalian iron metabolism. Cell 142:24-38. https://doi.org/10.1016/j.cell.2010.06.028.
    • (2010) Cell , vol.142 , pp. 24-38
    • Hentze, M.W.1    Muckenthaler, M.U.2    Galy, B.3    Camaschella, C.4
  • 3
    • 37549059612 scopus 로고    scopus 로고
    • Regulation of iron acquisition and storage: consequences for iron-linked disorders
    • De Domenico I, McVey Ward D, Kaplan J. 2008. Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat Rev Mol Cell Biol 9:72-81. https://doi.org/10.1038/nrm2295.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 72-81
    • De Domenico, I.1    McVey Ward, D.2    Kaplan, J.3
  • 4
    • 79952227712 scopus 로고    scopus 로고
    • Ironing out cancer
    • Torti SV, Torti FM. 2011. Ironing out cancer. Cancer Res 71:1511-1514. https://doi.org/10.1158/0008-5472.CAN-10-3614.
    • (2011) Cancer Res , vol.71 , pp. 1511-1514
    • Torti, S.V.1    Torti, F.M.2
  • 5
    • 78149246362 scopus 로고    scopus 로고
    • The hazards of iron loading
    • Weinberg ED. 2010. The hazards of iron loading. Metallomics 2:732-740. https://doi.org/10.1039/c0mt00023j.
    • (2010) Metallomics , vol.2 , pp. 732-740
    • Weinberg, E.D.1
  • 6
    • 33646345376 scopus 로고    scopus 로고
    • Ubiquitin ligases: cell-cycle control and cancer
    • Nakayama KI, Nakayama K. 2006. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6:369-381. https://doi.org/10.1038/nrc1881.
    • (2006) Nat Rev Cancer , vol.6 , pp. 369-381
    • Nakayama, K.I.1    Nakayama, K.2
  • 7
    • 84897085768 scopus 로고    scopus 로고
    • Roles of F-box proteins in cancer
    • Wang Z, Liu P, Inuzuka H, Wei W. 2014. Roles of F-box proteins in cancer. Nat Rev Cancer 14:233-247. https://doi.org/10.1038/nrc3700.
    • (2014) Nat Rev Cancer , vol.14 , pp. 233-247
    • Wang, Z.1    Liu, P.2    Inuzuka, H.3    Wei, W.4
  • 8
    • 70350576223 scopus 로고    scopus 로고
    • An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis
    • Salahudeen AA, Thompson JW, Ruiz JC, Ma HW, Kinch LN, Li Q, Grishin NV, Bruick RK. 2009. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 326: 722-726. https://doi.org/10.1126/science.1176326.
    • (2009) Science , vol.326 , pp. 722-726
    • Salahudeen, A.A.1    Thompson, J.W.2    Ruiz, J.C.3    Ma, H.W.4    Kinch, L.N.5    Li, Q.6    Grishin, N.V.7    Bruick, R.K.8
  • 10
    • 80052698326 scopus 로고    scopus 로고
    • The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo
    • Moroishi T, Nishiyama M, Takeda Y, Iwai K, Nakayama KI. 2011. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo. Cell Metab 14:339-351. https://doi.org/10.1016/j.cmet.2011.07.011.
    • (2011) Cell Metab , vol.14 , pp. 339-351
    • Moroishi, T.1    Nishiyama, M.2    Takeda, Y.3    Iwai, K.4    Nakayama, K.I.5
  • 11
    • 84897107855 scopus 로고    scopus 로고
    • F-box and leucine-rich repeat protein 5 (FBXL5): sensing intracellular iron and oxygen
    • Ruiz JC, Bruick RK. 2014. F-box and leucine-rich repeat protein 5 (FBXL5): sensing intracellular iron and oxygen. J Inorg Biochem 133:73-77. https://doi.org/10.1016/j.jinorgbio.2014.01.015.
    • (2014) J Inorg Biochem , vol.133 , pp. 73-77
    • Ruiz, J.C.1    Bruick, R.K.2
  • 12
    • 79952067750 scopus 로고    scopus 로고
    • Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective
    • Fietz SA, Huttner WB. 2011. Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol 21: 23-35. https://doi.org/10.1016/j.conb.2010.10.002.
    • (2011) Curr Opin Neurobiol , vol.21 , pp. 23-35
    • Fietz, S.A.1    Huttner, W.B.2
  • 13
    • 67651036549 scopus 로고    scopus 로고
    • The glial nature of embryonic and adult neural stem cells
    • Kriegstein A, Alvarez-Buylla A. 2009. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149-184. https://doi.org/10.1146/annurev.neuro.051508.135600.
    • (2009) Annu Rev Neurosci , vol.32 , pp. 149-184
    • Kriegstein, A.1    Alvarez-Buylla, A.2
  • 15
    • 82955168362 scopus 로고    scopus 로고
    • Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation
    • Belanger M, Allaman I, Magistretti PJ. 2011. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14: 724-738. https://doi.org/10.1016/j.cmet.2011.08.016.
    • (2011) Cell Metab , vol.14 , pp. 724-738
    • Belanger, M.1    Allaman, I.2    Magistretti, P.J.3
  • 18
    • 84880805523 scopus 로고    scopus 로고
    • Iron metabolism in the CNS: implications for neurodegenerative diseases
    • Rouault TA. 2013. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14:551-564. https://doi.org/10.1038/nrn3453.
    • (2013) Nat Rev Neurosci , vol.14 , pp. 551-564
    • Rouault, T.A.1
  • 19
    • 84884901205 scopus 로고    scopus 로고
    • Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators
    • Weinreb O, Mandel S, Youdim MB, Amit T. 2013. Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators. Free Radic Biol Med 62:52-64. https://doi.org/10.1016/j.freeradbiomed.2013.01.017.
    • (2013) Free Radic Biol Med , vol.62 , pp. 52-64
    • Weinreb, O.1    Mandel, S.2    Youdim, M.B.3    Amit, T.4
  • 21
    • 84883168593 scopus 로고    scopus 로고
    • Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer's disease detected in vivo with magnetic resonance imaging
    • Raven EP, Lu PH, Tishler TA, Heydari P, Bartzokis G. 2013. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer's disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis 37:127-136. https://doi.org/10.3233/JAD-130209.
    • (2013) J Alzheimers Dis , vol.37 , pp. 127-136
    • Raven, E.P.1    Lu, P.H.2    Tishler, T.A.3    Heydari, P.4    Bartzokis, G.5
  • 22
    • 84916629255 scopus 로고    scopus 로고
    • Baicalin and deferoxamine alleviate iron accumulation in different brain regions of Parkinson's disease rats
    • Xiong P, Chen X, Guo C, Zhang N, Ma B. 2012. Baicalin and deferoxamine alleviate iron accumulation in different brain regions of Parkinson's disease rats. Neural Regen Res 7:2092-2098. https://doi.org/10.3969/j.issn.1673-5374.2012.27.002.
    • (2012) Neural Regen Res , vol.7 , pp. 2092-2098
    • Xiong, P.1    Chen, X.2    Guo, C.3    Zhang, N.4    Ma, B.5
  • 23
    • 84904689167 scopus 로고    scopus 로고
    • Adult hippocampal neurogenesis in Parkinson's disease: impact on neuronal survival and plasticity
    • Regensburger M, Prots I, Winner B. 2014. Adult hippocampal neurogenesis in Parkinson's disease: impact on neuronal survival and plasticity. Neural Plast 2014:454696. https://doi.org/10.1155/2014/454696.
    • (2014) Neural Plast , vol.2014
    • Regensburger, M.1    Prots, I.2    Winner, B.3
  • 24
    • 84888292137 scopus 로고    scopus 로고
    • Resident adult neural stem cells in Parkinson's disease-the brain's own repair system?
    • van den Berge SA, van Strien ME, Hol EM. 2013. Resident adult neural stem cells in Parkinson's disease-the brain's own repair system? Eur J Pharmacol 719:117-127. https://doi.org/10.1016/j.ejphar.2013.04.058.
    • (2013) Eur J Pharmacol , vol.719 , pp. 117-127
    • van den Berge, S.A.1    van Strien, M.E.2    Hol, E.M.3
  • 25
    • 58249115047 scopus 로고    scopus 로고
    • Interpreting neonatal lethal phenotypes in mouse mutants: insights into gene function and human diseases
    • Turgeon B, Meloche S. 2009. Interpreting neonatal lethal phenotypes in mouse mutants: insights into gene function and human diseases. Physiol Rev 89:1-26. https://doi.org/10.1152/physrev.00040.2007.
    • (2009) Physiol Rev , vol.89 , pp. 1-26
    • Turgeon, B.1    Meloche, S.2
  • 26
    • 34249004934 scopus 로고    scopus 로고
    • Cell-cycle control and cortical development
    • Dehay C, Kennedy H. 2007. Cell-cycle control and cortical development. Nat Rev Neurosci 8:438-450. https://doi.org/10.1038/nrn2097.
    • (2007) Nat Rev Neurosci , vol.8 , pp. 438-450
    • Dehay, C.1    Kennedy, H.2
  • 28
    • 53049083077 scopus 로고    scopus 로고
    • Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex
    • Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V. 2008. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60:56-69. https://doi.org/10.1016/j.neuron.2008.09.028.
    • (2008) Neuron , vol.60 , pp. 56-69
    • Sessa, A.1    Mao, C.A.2    Hadjantonakis, A.K.3    Klein, W.H.4    Broccoli, V.5
  • 29
    • 0043160592 scopus 로고    scopus 로고
    • Perfusion-Perls and-Turnbull methods supplemented by DAB intensification for nonheme iron histochemistry: demonstration of the superior sensitivity of the methods in the liver, spleen, and stomach of the rat
    • Meguro R, Asano Y, Iwatsuki H, Shoumura K. 2003. Perfusion-Perls and-Turnbull methods supplemented by DAB intensification for nonheme iron histochemistry: demonstration of the superior sensitivity of the methods in the liver, spleen, and stomach of the rat. Histochem Cell Biol 120:73-82. https://doi.org/10.1007/s00418-003-0539-y.
    • (2003) Histochem Cell Biol , vol.120 , pp. 73-82
    • Meguro, R.1    Asano, Y.2    Iwatsuki, H.3    Shoumura, K.4
  • 30
    • 84901052694 scopus 로고    scopus 로고
    • ROS function in redox signaling and oxidative stress
    • Schieber M, Chandel NS. 2014. ROS function in redox signaling and oxidative stress. Curr Biol 24:R453-R462. https://doi.org/10.1016/j.cub.2014.03.034.
    • (2014) Curr Biol , vol.24 , pp. R453-R462
    • Schieber, M.1    Chandel, N.S.2
  • 31
    • 9344259718 scopus 로고    scopus 로고
    • Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors
    • Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER, Rhee SG. 2004. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci U S A 101:16419-16424. https://doi.org/10.1073/pnas.0407396101.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 16419-16424
    • Kwon, J.1    Lee, S.R.2    Yang, K.S.3    Ahn, Y.4    Kim, Y.J.5    Stadtman, E.R.6    Rhee, S.G.7
  • 32
    • 33750906556 scopus 로고    scopus 로고
    • The redox regulation of PI 3-kinase-dependent signaling
    • Leslie NR. 2006. The redox regulation of PI 3-kinase-dependent signaling. Antioxid Redox Signal 8:1765-1774. https://doi.org/10.1089/ars.2006.8.1765.
    • (2006) Antioxid Redox Signal , vol.8 , pp. 1765-1774
    • Leslie, N.R.1
  • 33
    • 78650968492 scopus 로고    scopus 로고
    • Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependent manner
    • Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, Wu H, Kornblum HI. 2011. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependent manner. Cell Stem Cell 8:59-71. https://doi.org/10.1016/j.stem.2010.11.028.
    • (2011) Cell Stem Cell , vol.8 , pp. 59-71
    • Le Belle, J.E.1    Orozco, N.M.2    Paucar, A.A.3    Saxe, J.P.4    Mottahedeh, J.5    Pyle, A.D.6    Wu, H.7    Kornblum, H.I.8
  • 37
    • 77957551487 scopus 로고    scopus 로고
    • Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress
    • Chuikov S, Levi BP, Smith ML, Morrison SJ. 2010. Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nat Cell Biol 12:999-1006. https://doi.org/10.1038/ncb2101.
    • (2010) Nat Cell Biol , vol.12 , pp. 999-1006
    • Chuikov, S.1    Levi, B.P.2    Smith, M.L.3    Morrison, S.J.4
  • 38
    • 84876893671 scopus 로고    scopus 로고
    • FIP200 is required for maintenance and differentiation of postnatal neural stem cells
    • Wang CR, Liang CC, Bian ZC, Zhu Y, Guan JL. 2013. FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 16:532-542. https://doi.org/10.1038/nn.3365.
    • (2013) Nat Neurosci , vol.16 , pp. 532-542
    • Wang, C.R.1    Liang, C.C.2    Bian, Z.C.3    Zhu, Y.4    Guan, J.L.5
  • 39
    • 84905564011 scopus 로고    scopus 로고
    • Mammalian target of rapamycin coordinates iron metabolism with iron-sulfur cluster assembly enzyme and tristetraprolin
    • Guan P, Wang N. 2014. Mammalian target of rapamycin coordinates iron metabolism with iron-sulfur cluster assembly enzyme and tristetraprolin. Nutrition 30:968-974. https://doi.org/10.1016/j.nut.2013.12.016.
    • (2014) Nutrition , vol.30 , pp. 968-974
    • Guan, P.1    Wang, N.2
  • 40
    • 70350094555 scopus 로고    scopus 로고
    • Iron deficiency down-regulates the Akt/TSC1-TSC2/mammalian target of rapamycin signaling pathway in rats and in COS-1 cells
    • Ndong M, Kazami M, Suzuki T, Uehara M, Katsumata S, Inoue H, Kobayashi K, Tadokoro T, Suzuki K, Yamamoto Y. 2009. Iron deficiency down-regulates the Akt/TSC1-TSC2/mammalian target of rapamycin signaling pathway in rats and in COS-1 cells. Nutr Res 29:640-647. https://doi.org/10.1016/j.nutres.2009.09.007.
    • (2009) Nutr Res , vol.29 , pp. 640-647
    • Ndong, M.1    Kazami, M.2    Suzuki, T.3    Uehara, M.4    Katsumata, S.5    Inoue, H.6    Kobayashi, K.7    Tadokoro, T.8    Suzuki, K.9    Yamamoto, Y.10
  • 41
    • 65349129409 scopus 로고    scopus 로고
    • The oral iron chelator deferasirox represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1
    • Ohyashiki JH, Kobayashi C, Hamamura R, Okabe S, Tauchi T, Ohyashiki K. 2009. The oral iron chelator deferasirox represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1. Cancer Sci 100:970-977. https://doi.org/10.1111/j.1349-7006.2009.01131.x.
    • (2009) Cancer Sci , vol.100 , pp. 970-977
    • Ohyashiki, J.H.1    Kobayashi, C.2    Hamamura, R.3    Okabe, S.4    Tauchi, T.5    Ohyashiki, K.6
  • 42
    • 84964315439 scopus 로고    scopus 로고
    • A critical role for mTORC1 in erythropoiesis and anemia
    • Knight ZA, Schmidt SF, Birsoy K, Tan K, Friedman JM. 2014. A critical role for mTORC1 in erythropoiesis and anemia. eLife 3:e01913. https://doi.org/10.7554/eLife.01913.
    • (2014) ELife , vol.3
    • Knight, Z.A.1    Schmidt, S.F.2    Birsoy, K.3    Tan, K.4    Friedman, J.M.5
  • 43
    • 84874699908 scopus 로고    scopus 로고
    • Neuronal-specific iron deficiency dysregulates mammalian target of rapamycin signaling during hippocampal development in nonanemic genetic mouse models
    • Fretham SJ, Carlson ES, Georgieff MK. 2013. Neuronal-specific iron deficiency dysregulates mammalian target of rapamycin signaling during hippocampal development in nonanemic genetic mouse models. J Nutr 143:260-266. https://doi.org/10.3945/jn.112.168617.
    • (2013) J Nutr , vol.143 , pp. 260-266
    • Fretham, S.J.1    Carlson, E.S.2    Georgieff, M.K.3
  • 45
    • 78651064535 scopus 로고    scopus 로고
    • Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex
    • Zeng LH, Rensing NR, Zhang B, Gutmann DH, Gambello MJ, Wong M. 2011 Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet 20:445-454. https://doi.org/10.1093/hmg/ddq491.
    • (2011) Hum Mol Genet , vol.20 , pp. 445-454
    • Zeng, L.H.1    Rensing, N.R.2    Zhang, B.3    Gutmann, D.H.4    Gambello, M.J.5    Wong, M.6
  • 46
    • 84860162767 scopus 로고    scopus 로고
    • Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis
    • Amiri A, Cho W, Zhou J, Birnbaum SG, Sinton CM, McKay RM, Parada LF. 2012 Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci 32: 5880-5890. https://doi.org/10.1523/JNEUROSCI.5462-11.2012.
    • (2012) J Neurosci , vol.32 , pp. 5880-5890
    • Amiri, A.1    Cho, W.2    Zhou, J.3    Birnbaum, S.G.4    Sinton, C.M.5    McKay, R.M.6    Parada, L.F.7
  • 47
    • 0033968596 scopus 로고    scopus 로고
    • Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR
    • Yokogami K, Wakisaka S, Avruch J, Reeves SA. 2000. Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol 10:47-50. https://doi.org/10.1016/S0960-9822(99)00268-7.
    • (2000) Curr Biol , vol.10 , pp. 47-50
    • Yokogami, K.1    Wakisaka, S.2    Avruch, J.3    Reeves, S.A.4
  • 48
    • 84886826594 scopus 로고    scopus 로고
    • mTOR complexes in neurodevelopmental and neuropsychiatric disorders
    • Costa-Mattioli M, Monteggia LM. 2013. mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat Neurosci 16:1537-1543. https://doi.org/10.1038/nn.3546.
    • (2013) Nat Neurosci , vol.16 , pp. 1537-1543
    • Costa-Mattioli, M.1    Monteggia, L.M.2
  • 50
    • 79953899846 scopus 로고    scopus 로고
    • Fbxw7-dependent degradation of Notch is required for control of "stemness" and neuronal-glial differentiation in neural stem cells
    • Matsumoto A, Onoyama I, Sunabori T, Kageyama R, Okano H, Nakayama KI. 2011. Fbxw7-dependent degradation of Notch is required for control of "stemness" and neuronal-glial differentiation in neural stem cells. J Biol Chem 286:13754-13764. https://doi.org/10.1074/jbc.M110.194936.
    • (2011) J Biol Chem , vol.286 , pp. 13754-13764
    • Matsumoto, A.1    Onoyama, I.2    Sunabori, T.3    Kageyama, R.4    Okano, H.5    Nakayama, K.I.6
  • 51
    • 0036703490 scopus 로고    scopus 로고
    • Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury
    • Patel BN, Dunn RJ, Jeong SY, Zhu QZ, Julien JP, David S. 2002. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci 22:6578-6586.
    • (2002) J Neurosci , vol.22 , pp. 6578-6586
    • Patel, B.N.1    Dunn, R.J.2    Jeong, S.Y.3    Zhu, Q.Z.4    Julien, J.P.5    David, S.6
  • 52
    • 84902209441 scopus 로고    scopus 로고
    • HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism
    • Moroishi T, Yamauchi T, Nishiyama M, Nakayama KI. 2014. HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism. J Biol Chem 289:16430-16441. https://doi.org/10.1074/jbc.M113.541490.
    • (2014) J Biol Chem , vol.289 , pp. 16430-16441
    • Moroishi, T.1    Yamauchi, T.2    Nishiyama, M.3    Nakayama, K.I.4
  • 53
    • 84925582112 scopus 로고    scopus 로고
    • MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-box RNA helicase DDX24
    • Yamauchi T, Nishiyama M, Moroishi T, Yumimoto K, Nakayama KI. 2014. MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-box RNA helicase DDX24. Mol Cell Biol 34:3321-3340. https://doi.org/10.1128/MCB.00320-14.
    • (2014) Mol Cell Biol , vol.34 , pp. 3321-3340
    • Yamauchi, T.1    Nishiyama, M.2    Moroishi, T.3    Yumimoto, K.4    Nakayama, K.I.5
  • 54
    • 0037036358 scopus 로고    scopus 로고
    • Reversible inactivation of the tumor suppressor PTEN by H2O2
    • Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG. 2002. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277: 20336-20342. https://doi.org/10.1074/jbc.M111899200.
    • (2002) J Biol Chem , vol.277 , pp. 20336-20342
    • Lee, S.R.1    Yang, K.S.2    Kwon, J.3    Lee, C.4    Jeong, W.5    Rhee, S.G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.