메뉴 건너뛰기




Volumn , Issue , 2015, Pages 664-671

KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning

Author keywords

adaptive over sampling; Imbalanced learning; kernel density estimation; Medical and healthcare data learning; pattern recognition

Indexed keywords

ALGORITHMS; BENCHMARKING; HEALTH CARE; PATTERN RECOGNITION; STATISTICS;

EID: 84963595704     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CEC.2015.7256954     Document Type: Conference Paper
Times cited : (106)

References (41)
  • 3
    • 35648972713 scopus 로고    scopus 로고
    • The prediction of breast cancer biopsy outcomes using two cad approaches that both emphasize an intelligible decision process
    • M. Elter, R. Schulz-Wendtland, and T. Wittenberg, "The prediction of breast cancer biopsy outcomes using two cad approaches that both emphasize an intelligible decision process," Medical Physics, vol. 34, no. 11, pp. 4164-4172, 2007.
    • (2007) Medical Physics , vol.34 , Issue.11 , pp. 4164-4172
    • Elter, M.1    Schulz-Wendtland, R.2    Wittenberg, T.3
  • 4
    • 33947284406 scopus 로고    scopus 로고
    • Boosted classification trees and class probability/quantile estimation
    • D. Mease, A. J. Wyner, and A. Buja, "Boosted classification trees and class probability/quantile estimation," The Journal of Machine Learning Research, vol. 8, pp. 409-439, 2007.
    • (2007) The Journal of Machine Learning Research , vol.8 , pp. 409-439
    • Mease, D.1    Wyner, A.J.2    Buja, A.3
  • 5
    • 34547993162 scopus 로고    scopus 로고
    • C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling
    • C. Drummond and R. C. Holte, "C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling," in Workshop on Learning from Imbalanced Datasets II, vol. 11, 2003.
    • (2003) Workshop on Learning from Imbalanced Datasets II , vol.11
    • Drummond, C.1    Holte, R.C.2
  • 7
    • 77957793322 scopus 로고    scopus 로고
    • RAMOBoost: Ranked minority oversampling in boosting
    • S. Chen, H. He, and E. A. Garcia, "RAMOBoost: Ranked minority oversampling in boosting," IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1624-1642, 2010.
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.10 , pp. 1624-1642
    • Chen, S.1    He, H.2    Garcia, E.A.3
  • 10
    • 84899756962 scopus 로고    scopus 로고
    • PDFOS: PDF estimation based over-sampling for imbalanced two-class problems
    • M. Gao, X. Hong, S. Chen, C. J. Harris, and E. Khalaf, "PDFOS: PDF estimation based over-sampling for imbalanced two-class problems," Neurocomputing, vol. 138, pp. 248-259, 2014.
    • (2014) Neurocomputing , vol.138 , pp. 248-259
    • Gao, M.1    Hong, X.2    Chen, S.3    Harris, C.J.4    Khalaf, E.5
  • 12
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Z.-H. Zhou and X.-Y. Liu, "Training cost-sensitive neural networks with methods addressing the class imbalance problem," IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 1, pp. 63-77, 2006.
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 13
    • 27244461128 scopus 로고    scopus 로고
    • Experiments with SVM and stratified sampling with an imbalanced problem: Detection of intestinal contractions
    • F. Vilariño, P. Spyridonos, J. Vitrià, and P. Radeva, "Experiments with SVM and stratified sampling with an imbalanced problem: Detection of intestinal contractions," in Pattern Recognition and Image Analysis, pp. 783-791, 2005.
    • (2005) Pattern Recognition and Image Analysis , pp. 783-791
    • Vilariño, F.1    Spyridonos, P.2    Vitrià, J.3    Radeva, P.4
  • 14
    • 33750593995 scopus 로고    scopus 로고
    • EUS SVMs: Ensemble of under-sampled SVMs for data imbalance problems
    • P. Kang and S. Cho, "EUS SVMs: Ensemble of under-sampled SVMs for data imbalance problems," in Neural Information Processing, pp. 837-846, 2006.
    • (2006) Neural Information Processing , pp. 837-846
    • Kang, P.1    Cho, S.2
  • 15
    • 33745789237 scopus 로고    scopus 로고
    • Boosting prediction accuracy on imbalanced datasets with SVM ensembles
    • Y. Liu, A. An, and X. Huang, "Boosting prediction accuracy on imbalanced datasets with SVM ensembles," in Advances in Knowledge Discovery and Data Mining, pp. 107-118, 2006.
    • (2006) Advances in Knowledge Discovery and Data Mining , pp. 107-118
    • Liu, Y.1    An, A.2    Huang, X.3
  • 16
    • 20844441675 scopus 로고    scopus 로고
    • KBA: Kernel boundary alignment considering imbalanced data distribution
    • G. Wu and E. Y. Chang, "KBA: Kernel boundary alignment considering imbalanced data distribution," IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 6, pp. 786-795, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 786-795
    • Wu, G.1    Chang, E.Y.2
  • 17
    • 33846046907 scopus 로고    scopus 로고
    • A kernel-based two-class classifier for imbalanced data sets
    • X. Hong, S. Chen, and C. J. Harris, "A kernel-based two-class classifier for imbalanced data sets," IEEE Transactions on Neural Networks, vol. 18, no. 1, pp. 28-41, 2007.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.1 , pp. 28-41
    • Hong, X.1    Chen, S.2    Harris, C.J.3
  • 18
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 20
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 24
    • 84937796378 scopus 로고    scopus 로고
    • ENN: Extended nearest neighbor method for pattern recognition
    • in press
    • B. Tang and H. He, "ENN: Extended nearest neighbor method for pattern recognition," IEEE Computational Intelligence Magazine, 2015 in press.
    • (2015) IEEE Computational Intelligence Magazine
    • Tang, B.1    He, H.2
  • 26
    • 0348139702 scopus 로고    scopus 로고
    • Dimension reduction by local principal component analysis
    • N. Kambhatla and T. K. Leen, "Dimension reduction by local principal component analysis," Neural Computation, vol. 9, no. 7, pp. 1493-1516, 1997.
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1493-1516
    • Kambhatla, N.1    Leen, T.K.2
  • 29
    • 84906948263 scopus 로고    scopus 로고
    • Sparse-representation-based classification with structure-preserving dimension reduction
    • J. Xu, G. Yang, Y. Yin, H. Man, and H. He, "Sparse-representation-based classification with structure-preserving dimension reduction," Cognitive Computation, vol. 6, no. 3, pp. 608-621, 2014.
    • (2014) Cognitive Computation , vol.6 , Issue.3 , pp. 608-621
    • Xu, J.1    Yang, G.2    Yin, Y.3    Man, H.4    He, H.5
  • 31
    • 84880715885 scopus 로고    scopus 로고
    • L1 graph based on sparse coding for feature selection
    • J. Xu, G. Yang, H. Man, and H. He, "L1 graph based on sparse coding for feature selection," in Advances in Neural Networks, pp. 594-601, 2013.
    • (2013) Advances in Neural Networks , pp. 594-601
    • Xu, J.1    Yang, G.2    Man, H.3    He, H.4
  • 33
    • 26944454497 scopus 로고    scopus 로고
    • ROC graphs: Notes and practical considerations for researchers
    • T. Fawcett, "ROC graphs: Notes and practical considerations for researchers," Machine learning, vol. 31, pp. 1-38, 2004.
    • (2004) Machine Learning , vol.31 , pp. 1-38
    • Fawcett, T.1
  • 34
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the ROC curve
    • D. J. Hand, "Measuring classifier performance: A coherent alternative to the area under the ROC curve," Machine learning, vol. 77, no. 1, pp. 103-123, 2009.
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 103-123
    • Hand, D.J.1
  • 37
    • 34447507896 scopus 로고    scopus 로고
    • Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection
    • M. A. Little, P. E. McSharry, S. J. Roberts, D. A. Costello, and I. M. Moroz, "Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection," BioMedical Engineering OnLine, vol. 6, no. 1, p. 23, 2007.
    • (2007) BioMedical Engineering OnLine , vol.6 , Issue.1 , pp. 23
    • Little, M.A.1    McSharry, P.E.2    Roberts, S.J.3    Costello, D.A.4    Moroz, I.M.5
  • 38
    • 13744256790 scopus 로고    scopus 로고
    • Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters
    • E. Berthonnaud, J. Dimnet, P. Roussouly, and H. Labelle, "Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters," Journal of spinal disorders & techniques, vol. 18, no. 1, pp. 40-47, 2005.
    • (2005) Journal of Spinal Disorders & Techniques , vol.18 , Issue.1 , pp. 40-47
    • Berthonnaud, E.1    Dimnet, J.2    Roussouly, P.3    Labelle, H.4
  • 39
    • 85005299854 scopus 로고
    • The multi-purpose incremental learning system AQ15 and its testing application to three medical domains
    • R. MICHALSKI, "The multi-purpose incremental learning system AQ15 and its testing application to three medical domains," Proceedings. of AAAI-86, Morgan Kaufmann, pp. 1041-1045, 1986.
    • (1986) Proceedings. of AAAI-86, Morgan Kaufmann , pp. 1041-1045
    • Michalski, R.1
  • 40
    • 0030250431 scopus 로고    scopus 로고
    • Variability of impedivity in normal and pathological breast tissue
    • J. Jossinet, "Variability of impedivity in normal and pathological breast tissue," Medical and Biological Engineering and Computing, vol. 34, no. 5, pp. 346-350, 1996.
    • (1996) Medical and Biological Engineering and Computing , vol.34 , Issue.5 , pp. 346-350
    • Jossinet, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.