메뉴 건너뛰기




Volumn 8, Issue 2, 2016, Pages

Tree species abundance predictions in a tropical agricultural landscape with a supervised classification model and imbalanced data

Author keywords

Agriculture; Class imbalance; Imaging spectroscopy; Operational species mapping; Support vector machine; Tropics

Indexed keywords

AGRICULTURAL MACHINERY; AGRICULTURE; CLASSIFICATION (OF INFORMATION); CONSERVATION; FORECASTING; FORESTRY; MAPPING; SPECTROSCOPY; SUPPORT VECTOR MACHINES; TROPICS;

EID: 84962601050     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs8020161     Document Type: Article
Times cited : (70)

References (59)
  • 1
    • 0035882583 scopus 로고    scopus 로고
    • Using remote sensing to assess biodiversity
    • Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 2001, 22, 2377-2400.
    • (2001) Int. J. Remote Sens. , vol.22 , pp. 2377-2400
    • Nagendra, H.1
  • 3
    • 84903525202 scopus 로고    scopus 로고
    • Coexistence and environmental filtering of species-specific biomass in an African savanna
    • Colgan, M.S.; Asner, G.P. Coexistence and environmental filtering of species-specific biomass in an African savanna. Ecology 2014, 95, 1579-1590.
    • (2014) Ecology , vol.95 , pp. 1579-1590
    • Colgan, M.S.1    Asner, G.P.2
  • 4
    • 0034717018 scopus 로고    scopus 로고
    • Spatial patterns in the distribution of tropical tree species
    • Condit, R. Spatial patterns in the distribution of tropical tree species. Science 2000, 288, 1414-1418.
    • (2000) Science , vol.288 , pp. 1414-1418
    • Condit, R.1
  • 5
    • 41449111212 scopus 로고    scopus 로고
    • Classification of Australian forest communities using aerial photography, CASI and HyMap data
    • Lucas, R.; Bunting, P.; Paterson, M.; Chisholm, L. Classification of Australian forest communities using aerial photography, CASI and HyMap data. Remote Sens. Environ. 2008, 112, 2088-2103.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2088-2103
    • Lucas, R.1    Bunting, P.2    Paterson, M.3    Chisholm, L.4
  • 7
    • 0141682413 scopus 로고    scopus 로고
    • Mapping nonnative plants using hyperspectral imagery
    • Underwood, E.; Ustin, S.; DiPietro, D. Mapping nonnative plants using hyperspectral imagery. Remote Sens. Environ. 2003, 86, 150-161.
    • (2003) Remote Sens. Environ. , vol.86 , pp. 150-161
    • Underwood, E.1    Ustin, S.2    DiPietro, D.3
  • 8
    • 79953790671 scopus 로고    scopus 로고
    • Benefits of hyperspectral remote sensing for tracking plant invasions
    • He, K.S.; Rocchini, D.; Neteler, M.; Nagendra, H. Benefits of hyperspectral remote sensing for tracking plant invasions. Divers. Distrib. 2011, 17, 381-392.
    • (2011) Divers. Distrib. , vol.17 , pp. 381-392
    • He, K.S.1    Rocchini, D.2    Neteler, M.3    Nagendra, H.4
  • 9
    • 21444447781 scopus 로고    scopus 로고
    • Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales
    • Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375-398.
    • (2005) Remote Sens. Environ. , vol.96 , pp. 375-398
    • Clark, M.L.1    Roberts, D.A.2    Clark, D.B.3
  • 10
    • 56549117591 scopus 로고    scopus 로고
    • High resolution satellite imagery for tropical biodiversity studies: The devil is in the detail
    • Nagendra, H.; Rocchini, D. High resolution satellite imagery for tropical biodiversity studies: The devil is in the detail. Biodivers. Conserv. 2008, 17, 3431-3442.
    • (2008) Biodivers. Conserv. , vol.17 , pp. 3431-3442
    • Nagendra, H.1    Rocchini, D.2
  • 12
    • 84898634853 scopus 로고    scopus 로고
    • Urban tree species mapping using hyperspectral and lidar data fusion
    • Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens. Environ. 2014, 148, 70-83.
    • (2014) Remote Sens. Environ. , vol.148 , pp. 70-83
    • Alonzo, M.1    Bookhagen, B.2    Roberts, D.A.3
  • 13
    • 84868240462 scopus 로고    scopus 로고
    • Semi-supervised methods to identify individual crowns of lowland tropical canopy species using imaging spectroscopy and lidar
    • Féret, J.B.; Asner, G.P. Semi-supervised methods to identify individual crowns of lowland tropical canopy species using imaging spectroscopy and lidar. Remote Sens. 2012, 4, 2457-2476.
    • (2012) Remote Sens. , vol.4 , pp. 2457-2476
    • Féret, J.B.1    Asner, G.P.2
  • 14
    • 0034082989 scopus 로고    scopus 로고
    • Using vegetation reflectance variability for species level classification of hyperspectral data
    • Cochrane, M.A. Using vegetation reflectance variability for species level classification of hyperspectral data. Int. J. Remote Sens. 2000, 21, 2075-2087.
    • (2000) Int. J. Remote Sens. , vol.21 , pp. 2075-2087
    • Cochrane, M.A.1
  • 15
    • 84898061860 scopus 로고    scopus 로고
    • Improving remote species identification through efficient training data collection
    • Baldeck, C.A.; Asner, G.P. Improving remote species identification through efficient training data collection. Remote Sens. 2014, 6, 2682-2698.
    • (2014) Remote Sens. , vol.6 , pp. 2682-2698
    • Baldeck, C.A.1    Asner, G.P.2
  • 16
    • 84871745702 scopus 로고    scopus 로고
    • Tree species discrimination in tropical forests using airborne imaging spectroscopy
    • Féret, J.B.; Asner, G.P. Tree species discrimination in tropical forests using airborne imaging spectroscopy. IEEE Trans. Geosci. Remote Sens. 2012, 51, 1-12.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.51 , pp. 1-12
    • Féret, J.B.1    Asner, G.P.2
  • 17
    • 84873619133 scopus 로고    scopus 로고
    • Identifying Santa Barbara's urban tree species from AVIRIS imagery using canonical discriminant analysis
    • Alonzo, M.; Roth, K.; Roberts, D. Identifying Santa Barbara's urban tree species from AVIRIS imagery using canonical discriminant analysis. Remote Sens. Lett. 2013, 4, 513-521.
    • (2013) Remote Sens. Lett. , vol.4 , pp. 513-521
    • Alonzo, M.1    Roth, K.2    Roberts, D.3
  • 19
    • 27544454750 scopus 로고    scopus 로고
    • A survey of small-scale farmers using trees in pastures in Herrera Province, Panama
    • Love, B.; Spaner, D. A survey of small-scale farmers using trees in pastures in Herrera Province, Panama. J. Sustain. For. 2005, 20, 37-65.
    • (2005) J. Sustain. For. , vol.20 , pp. 37-65
    • Love, B.1    Spaner, D.2
  • 20
    • 84859034535 scopus 로고    scopus 로고
    • The structure and composition of a tropical dry forest landscape after land clearance; Azuero peninsula, Panama
    • Griscom, H.P.; Connelly, A.B.; Ashton, M.S.;Wishnie, M.H.; Deago, J. The structure and composition of a tropical dry forest landscape after land clearance; Azuero peninsula, Panama. J. Sustain. For. 2011, 30, 37-41.
    • (2011) J. Sustain. For. , vol.30 , pp. 37-41
    • Griscom, H.P.1    Connelly, A.B.2    Ashton, M.S.3    Wishnie, M.H.4    Deago, J.5
  • 22
    • 4544272407 scopus 로고    scopus 로고
    • Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification
    • Foody, G.M.; Mathur, A. Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sens. Environ. 2004, 93, 107-117.
    • (2004) Remote Sens. Environ. , vol.93 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 23
    • 84859928062 scopus 로고    scopus 로고
    • Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and lidar data
    • Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and lidar data. Remote Sens. Environ. 2012, 123, 258-270.
    • (2012) Remote Sens. Environ. , vol.123 , pp. 258-270
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 26
    • 84866561560 scopus 로고    scopus 로고
    • Comparing endmember selection techniques for accurate mapping of plant species and land cover using imaging spectrometer data
    • Roth, K.L.; Dennison, P.E.; Roberts, D.A. Comparing endmember selection techniques for accurate mapping of plant species and land cover using imaging spectrometer data. Remote Sens. Environ. 2012, 127, 139-152.
    • (2012) Remote Sens. Environ. , vol.127 , pp. 139-152
    • Roth, K.L.1    Dennison, P.E.2    Roberts, D.A.3
  • 27
    • 77956884950 scopus 로고    scopus 로고
    • Assessing the utility of airborne hyperspectral and lidar data for species distribution mapping in the coastal Pacific Northwest, Canada
    • Jones, T.G.; Coops, N.C.; Sharma, T. Assessing the utility of airborne hyperspectral and lidar data for species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sens. Environ. 2010, 114, 2841-2852.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 2841-2852
    • Jones, T.G.1    Coops, N.C.2    Sharma, T.3
  • 28
    • 84864969220 scopus 로고    scopus 로고
    • Species-Level Differences in Hyperspectral Metrics among Tropical Rainforest Trees as Determined by a Tree-Based Classifier
    • Clark, M.L.; Roberts, D.A. Species-Level Differences in Hyperspectral Metrics among Tropical Rainforest Trees as Determined by a Tree-Based Classifier. Remote Sens. 2012, 4, 1820-1855.
    • (2012) Remote Sens. , vol.4 , pp. 1820-1855
    • Clark, M.L.1    Roberts, D.A.2
  • 29
    • 84870853911 scopus 로고    scopus 로고
    • Mapping savanna tree species at ecosystem scales using support vector machine classification and BRDF correction on airborne hyperspectral and lidar data
    • Colgan, M.S.; Baldeck, C.A.; Féret, J.-B.; Asner, G.P. Mapping savanna tree species at ecosystem scales using support vector machine classification and BRDF correction on airborne hyperspectral and lidar data. Remote Sens. 2012, 4, 3462-3480.
    • (2012) Remote Sens. , vol.4 , pp. 3462-3480
    • Colgan, M.S.1    Baldeck, C.A.2    Féret, J.-B.3    Asner, G.P.4
  • 30
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778-1790.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 31
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remote sensing
    • Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007-1011.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 1007-1011
    • Pal, M.1    Mather, P.M.2
  • 32
    • 84860601047 scopus 로고    scopus 로고
    • Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points
    • Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78-87.
    • (2012) ISPRS J. Photogramm. Remote Sens. , vol.70 , pp. 78-87
    • Shao, Y.1    Lunetta, R.S.2
  • 34
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional class-imbalanced data
    • Blagus, R.; Lusa, L. Class prediction for high-dimensional class-imbalanced data. BMC Bioinform. 2010, 11, 523.
    • (2010) BMC Bioinform. , vol.11 , pp. 523
    • Blagus, R.1    Lusa, L.2
  • 35
    • 84872812260 scopus 로고    scopus 로고
    • Class-imbalanced classifiers for high-dimensional data
    • Lin,W.J.; Chen, J.J. Class-imbalanced classifiers for high-dimensional data. Brief. Bioinform. 2013, 14, 13-26.
    • (2013) Brief. Bioinform. , vol.14 , pp. 13-26
    • Lin, W.J.1    Chen, J.J.2
  • 36
    • 42149119472 scopus 로고    scopus 로고
    • On the accuracy of landscape pattern analysis using remote sensing data
    • Shao, G.; Wu, J. On the accuracy of landscape pattern analysis using remote sensing data. Landsc. Ecol. 2008, 23, 505-511.
    • (2008) Landsc. Ecol. , vol.23 , pp. 505-511
    • Shao, G.1    Wu, J.2
  • 37
    • 84904630187 scopus 로고    scopus 로고
    • Pasture succession in the Neotropics: Extending the nucleation hypothesis into a matrix discontinuity hypothesis
    • Peterson, C.J.; Dosch, J.J.; Carson, W.P. Pasture succession in the Neotropics: Extending the nucleation hypothesis into a matrix discontinuity hypothesis. Oecologia 2014, 175, 1325-1335.
    • (2014) Oecologia , vol.175 , pp. 1325-1335
    • Peterson, C.J.1    Dosch, J.J.2    Carson, W.P.3
  • 40
    • 84913553499 scopus 로고    scopus 로고
    • Quantifying forest canopy traits: Imaging spectroscopy versus field survey
    • Asner, G.P.; Martin, R.E.; Anderson, C.B.; Knapp, D.E. Quantifying forest canopy traits: Imaging spectroscopy versus field survey. Remote Sens. Environ. 2015, 158, 15-27.
    • (2015) Remote Sens. Environ. , vol.158 , pp. 15-27
    • Asner, G.P.1    Martin, R.E.2    Anderson, C.B.3    Knapp, D.E.4
  • 43
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 44
    • 70350728414 scopus 로고    scopus 로고
    • Margin calibration in SVM class-imbalanced learning
    • Yang, C.-Y.; Yang, J.-S.; Wang, J.-J. Margin calibration in SVM class-imbalanced learning. Neurocomputing 2009, 73, 397-411.
    • (2009) Neurocomputing , vol.73 , pp. 397-411
    • Yang, C.-Y.1    Yang, J.-S.2    Wang, J.-J.3
  • 45
    • 67650759361 scopus 로고    scopus 로고
    • A kernel functions analysis for support vector machines for land cover classification
    • Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352-359.
    • (2009) Int. J. Appl. Earth Obs. Geoinf. , vol.11 , pp. 352-359
    • Kavzoglu, T.1    Colkesen, I.2
  • 46
    • 65749119811 scopus 로고    scopus 로고
    • Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap
    • Kim, J.-H. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data Anal. 2009, 53, 3735-3745.
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 3735-3745
    • Kim, J.-H.1
  • 47
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measures for classification tasks
    • Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427-437.
    • (2009) Inf. Process. Manag. , vol.45 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2
  • 48
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35-46.
    • (1991) Remote Sens. Environ. , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 50
    • 84962590374 scopus 로고    scopus 로고
    • Available online, accessed on 11 January
    • Conrad, O. Module Watershed Segmentation. Available online: http://www.saga-gis.org/saga_module_doc/2.1.3/imagery_segmentation_0.html (accessed on 11 January 2016).
    • (2016) Module Watershed Segmentation
    • Conrad, O.1
  • 51
    • 84870202759 scopus 로고    scopus 로고
    • Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using strati field estimation
    • Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using strati field estimation. Remote Sens. Environ. 2013, 129, 122-131.
    • (2013) Remote Sens. Environ. , vol.129 , pp. 122-131
    • Olofsson, P.1    Foody, G.M.2    Stehman, S.V.3    Woodcock, C.E.4
  • 55
    • 85027952483 scopus 로고    scopus 로고
    • Single-species detection with airborne imaging spectroscopy data: A comparison of support vector techniques
    • Baldeck, C.A.; Asner, G.P. Single-species detection with airborne imaging spectroscopy data: A comparison of support vector techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 2501-2512.
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.8 , pp. 2501-2512
    • Baldeck, C.A.1    Asner, G.P.2
  • 56
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Platt, J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 1999, 10, 61-74.
    • (1999) Adv. Large Margin Classif. , vol.10 , pp. 61-74
    • Platt, J.1
  • 57
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 58
    • 35048879177 scopus 로고    scopus 로고
    • Gaussian processes in machine learning
    • Springer Berlin Heidelberg: Heidelberg, Germany
    • Rasmussen, C.E. Gaussian processes in machine learning. In Advanced Lectures on Machine Learning; Springer Berlin Heidelberg: Heidelberg, Germany, 2004; pp. 63-71.
    • (2004) Advanced Lectures on Machine Learning , pp. 63-71
    • Rasmussen, C.E.1
  • 59
    • 84874354814 scopus 로고    scopus 로고
    • V Estimating area from an accuracy assessment error matrix
    • Stehman, S. V Estimating area from an accuracy assessment error matrix. Remote Sens. Environ. 2013, 132, 202-211.
    • (2013) Remote Sens. Environ. , vol.132 , pp. 202-211
    • Stehman, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.