메뉴 건너뛰기




Volumn , Issue , 2008, Pages 143-152

Start globally, optimize locally, predict globally: Improving performance on imbalanced data

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL DATASETS; CLASS IMBALANCE; CLASSIFIER PERFORMANCE; GLOBAL SAMPLING; IMBALANCED DATA; IMPROVING PERFORMANCE; MULTI-MODAL; OPTIMAL SAMPLING; REAL-WORLD; TRAINING DATA;

EID: 67049119859     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2008.87     Document Type: Conference Paper
Times cited : (68)

References (23)
  • 1
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5×2cv F test for comparing supervised classification learning algorithms
    • E. Alpaydin. Combined 5x2cv F Test for Comparing Supervised Classification Learning Algorithms. Neural Computation, 11(8):1885-1892, 1999.
    • (1999) Neural Computation , vol.11 , Issue.8 , pp. 1885-1892
    • Alpaydin, E.1
  • 3
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • G. Batista, R. Prati, and M. Monard. A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. SIGKDD Explorations, 6(1):20-29, 2004.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.1    Prati, R.2    Monard, M.3
  • 4
    • 34547994328 scopus 로고    scopus 로고
    • Discriminative learning for differeing training and test distributions
    • S. Bickel, M. Brückner, and T. Scheffer. Discriminative Learning for Differeing Training and Test Distributions. In ICML, pages 81-88, 2007.
    • (2007) ICML , pp. 81-88
    • Bickel, S.1    Brückner, M.2    Scheffer, T.3
  • 8
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Learning from imbalanced datasets
    • N. V. Chawla, N. Japkowicz, and A. Kolcz. Editorial: Learning from Imbalanced Datasets. SIGKDD Explorations, 6(1):1-6, 2004.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kolcz, A.3
  • 10
    • 67049161572 scopus 로고    scopus 로고
    • A framework for monitoring classifiers' performance: When and why failure occurs?
    • D. A. Cieslak and N. V. Chawla. A Framework for Monitoring Classifiers' Performance: When andWhy Failure Occurs? Knowledge and Information Systems, 2008.
    • (2008) Knowledge and Information Systems
    • Cieslak, D.A.1    Chawla, N.V.2
  • 12
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar. Statistical Comparisons of Classifiers overMultiple Data Sets. Journal of Machine Learning Research, 7:1-30, 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 13
    • 0000259511 scopus 로고    scopus 로고
    • Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms
    • T. G. Dietterich. Approximate statistical test for comparing supervised classiffication learning algorithms. Neural Computation, 10(7):1895-1923, 1998. (Pubitemid 128463689)
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 17
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • M. Kubat, R. C. Holte, and S. Matwin. Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Machine Learning, 30:195-215, 1998. (Pubitemid 128631743)
    • (1998) Machine Learning , vol.30 , Issue.2-3 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 18
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • F. Provost and P. Domingos. Tree Induction for Probability- Based Ranking. Machine Learning, 52(3):199-215, September 2003.
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 199-215
    • Provost, F.1    Domingos, P.2
  • 19
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan. Induction of Decision Trees. Machine Learning, 1:81-106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 20
    • 4744344959 scopus 로고    scopus 로고
    • Classification and knowledge discovery in protein databases
    • DOI 10.1016/j.jbi.2004.07.008, PII S1532046404000760, Biomedical Machine Learning
    • P. Radivojac, N. V. Chawla, A. K. Dunker, and Z. Obradovic. Classification and knowledge discovery in protein databases. Journal of Biomedical Informatics, 37:224-239, 2004. (Pubitemid 39311061)
    • (2004) Journal of Biomedical Informatics , vol.37 , Issue.4 , pp. 224-239
    • Radivojac, P.1    Chawla, N.V.2    Dunker, A.K.3    Obradovic, Z.4
  • 21
    • 0002618996 scopus 로고
    • A review of canonical coordinates and an alternative to corresponence analysis using hellinger distance
    • C. Rao. A Review of Canonical Coordinates and an Alternative to Corresponence Analysis using Hellinger Distance. Questiio (Quaderns d'Estadistica i Investigacio Operativa), 19:23-63, 1995.
    • (1995) Questiio (Quaderns d'Estadistica i Investigacio Operativa) , vol.19 , pp. 23-63
    • Rao, C.1
  • 22
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • G. Weiss. Mining with Rarity: A Unifying Framework. ACM SIGKDD Explorations, 6:7-19, 2004.
    • (2004) ACM SIGKDD Explorations , vol.6 , pp. 7-19
    • Weiss, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.