메뉴 건너뛰기




Volumn 31, Issue 4, 2017, Pages 1060-1089

Measuring discrimination in algorithmic decision making

Author keywords

Accountability; Discrimination aware data mining; Fairness aware machine learning; Indirect discrimination; Predictive modeling

Indexed keywords

ARTIFICIAL INTELLIGENCE; BEHAVIORAL RESEARCH; DECISION MAKING; LEARNING SYSTEMS; SURVEYS;

EID: 85016635584     PISSN: 13845810     EISSN: 1573756X     Source Type: Journal    
DOI: 10.1007/s10618-017-0506-1     Document Type: Article
Times cited : (249)

References (62)
  • 1
    • 84989824206 scopus 로고    scopus 로고
    • Bias in criminal risk scores is mathematically inevitable, researchers say
    • Angwin J, Larson J (2016) Bias in criminal risk scores is mathematically inevitable, researchers say. ProPublica. https://www.propublica.org/article/bias-in-criminal-risk-scores-is-mathematically-inevitable-researchers-say
    • (2016) ProPublica
    • Angwin, J.1    Larson, J.2
  • 2
    • 85027797376 scopus 로고
    • The theory of discrimination
    • Ashenfelter O, Rees A, (eds), Princeton University Press, Princeton
    • Arrow KJ (1973) The theory of discrimination. In: Ashenfelter O, Rees A (eds) Discrimination in labor markets. Princeton University Press, Princeton, pp 3–33
    • (1973) Discrimination in labor markets , pp. 3-33
    • Arrow, K.J.1
  • 3
    • 85021033236 scopus 로고    scopus 로고
    • International workshop on fairness, accountability
    • Barocas S, Hardt M (eds) (2014) International workshop on fairness, accountability, and transparency in machine learning (FATML). http://www.fatml.org/2014
    • (2014) And transparency in machine learning (FATML
    • Barocas, S.1
  • 4
    • 84991702850 scopus 로고    scopus 로고
    • Big data’s disparate impact
    • Barocas S, Selbst AD (2016) Big data’s disparate impact. Calif Law Rev 104:671–732
    • (2016) Calif Law Rev , vol.104 , pp. 671-732
    • Barocas, S.1    Selbst, A.D.2
  • 6
    • 84900864205 scopus 로고    scopus 로고
    • Better decision support through exploratory discrimination-aware data mining: foundations and empirical evidence
    • Berendt B, Preibusch S (2014) Better decision support through exploratory discrimination-aware data mining: foundations and empirical evidence. Artif Intell Law 22(2):175–209
    • (2014) Artif Intell Law , vol.22 , Issue.2 , pp. 175-209
    • Berendt, B.1    Preibusch, S.2
  • 9
    • 85011284179 scopus 로고    scopus 로고
    • Exposing the probabilistic causal structure of discrimination
    • Bonchi F, Hajian S, Mishra B, Ramazzotti D (2015) Exposing the probabilistic causal structure of discrimination. CoRR arXiv:1510.00552
    • (2015) CoRR arXiv , vol.1510 , pp. 552
    • Bonchi, F.1    Hajian, S.2    Mishra, B.3    Ramazzotti, D.4
  • 10
    • 85021015901 scopus 로고    scopus 로고
    • The problem with algorithms: magnifying misbehaviour
    • Burn-Murdoch J (2013) The problem with algorithms: magnifying misbehaviour. The Guardian. http://www.theguardian.com/news/datablog/2013/aug/14/problem-with-algorithms-magnifying-misbehaviour
    • (2013) The Guardian
    • Burn-Murdoch, J.1
  • 11
    • 77958063401 scopus 로고    scopus 로고
    • Three naive bayes approaches for discrimination-free classification
    • Calders T, Verwer S (2010) Three naive bayes approaches for discrimination-free classification. Data Min Knowl Discov 21(2):277–292
    • (2010) Data Min Knowl Discov , vol.21 , Issue.2 , pp. 277-292
    • Calders, T.1    Verwer, S.2
  • 12
    • 85021008890 scopus 로고    scopus 로고
    • IEEE ICDM, International workshop on discrimination and privacy-aware data mining (DPADM
    • Calders T, Zliobaite I (eds) (2012) IEEE ICDM 2012 International workshop on discrimination and privacy-aware data mining (DPADM). https://sites.google.com/site/dpadm2012/
    • (2012) Zliobaite I (eds) , vol.2012
    • Calders, T.1
  • 14
    • 84894660134 scopus 로고    scopus 로고
    • Controlling attribute effect in linear regression. In: Proceedings of the 13th international conference on data Mining, ICDM
    • Calders T, Karim A, Kamiran F, Ali W, Zhang X (2013) Controlling attribute effect in linear regression. In: Proceedings of the 13th international conference on data Mining, ICDM, pp 71–80
    • (2013) Pp 71–80
    • Calders, T.1    Karim, A.2    Kamiran, F.3    Ali, W.4    Zhang, X.5
  • 16
    • 0000642942 scopus 로고
    • Some methods for strengthening the common chi2 tests
    • Cochran WG (1954) Some methods for strengthening the common chi2 tests. Biometrics 10(4):417–451
    • (1954) Biometrics , vol.10 , Issue.4 , pp. 417-451
    • Cochran, W.G.1
  • 17
    • 85021029104 scopus 로고    scopus 로고
    • A computer program used for bail and sentencing decisions was labeled biased against blacks. its actually not that clear
    • Corbett-Davies S, Pierson E, Feller A, Goel S (2016) A computer program used for bail and sentencing decisions was labeled biased against blacks. its actually not that clear. The Washington Post. https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-an-algorithm-be-racist-our-analysis-is-more-cautious-than-propublicas/?utm_term=.4ded14bf289e
    • (2016) The Washington Post
    • Corbett-Davies, S.1    Pierson, E.2    Feller, A.3    Goel, S.4
  • 19
    • 84856446756 scopus 로고    scopus 로고
    • Fairness through awareness. In: Proceedings of innovations in theoretical computer science
    • Dwork C, Hardt M, Pitassi T, Reingold O, Zemel RS (2012) Fairness through awareness. In: Proceedings of innovations in theoretical computer science, pp 214–226
    • (2012) Pp 214–226
    • Dwork, C.1    Hardt, M.2    Pitassi, T.3    Reingold, O.4    Zemel, R.S.5
  • 20
    • 85020960187 scopus 로고    scopus 로고
    • How social bias creeps into web technology
    • Dwoskin E (2015) How social bias creeps into web technology. The Wall Street Journal. http://www.wsj.com/articles/computers-are-showing-their-biases-and-tech-firms-are-concerned-1440102894
    • (2015) The Wall Street Journal
    • Dwoskin, E.1
  • 21
    • 84937494712 scopus 로고    scopus 로고
    • Digital discrimination: the case of airbnb.com. Working Paper 14-054
    • Edelman BG, Luca M (2014) Digital discrimination: the case of airbnb.com. Working Paper 14-054, Harvard Business School NOM Unit
    • (2014) Harvard Business School NOM Unit
    • Edelman, B.G.1    Luca, M.2
  • 22
    • 85020992051 scopus 로고    scopus 로고
    • How to present a discrimination claim: Handbook on seeking remedies under the EU Non-discrimination Directives
    • European Commission (2011) How to present a discrimination claim: Handbook on seeking remedies under the EU Non-discrimination Directives. EU Publications Office
    • (2011) EU Publications Office
  • 23
    • 84859854375 scopus 로고    scopus 로고
    • EU Publications Office, Luxemberg
    • European Union Agency for Fundamental Rights (2011) Handbook on European non-discrimination law. EU Publications Office, Luxemberg
    • (2011) Handbook on European non-discrimination law
  • 24
    • 84954161181 scopus 로고    scopus 로고
    • Certifying and removing disparate impact. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • Feldman M, Friedler SA, Moeller J, Scheidegger C, Venkatasubramanian S (2015) Certifying and removing disparate impact. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 259–268
    • (2015) Pp 259–268
    • Feldman, M.1    Friedler, S.A.2    Moeller, J.3    Scheidegger, C.4    Venkatasubramanian, S.5
  • 25
    • 84886554104 scopus 로고    scopus 로고
    • Prediction with model-based neutrality. In: Proceedings of European conference on machine learning and knowledge discovery in databases
    • Fukuchi K, Sakuma J, Kamishima T (2013) Prediction with model-based neutrality. In: Proceedings of European conference on machine learning and knowledge discovery in databases, pp 499–514
    • (2013) Pp 499–514
    • Fukuchi, K.1    Sakuma, J.2    Kamishima, T.3
  • 26
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 27
    • 84878282973 scopus 로고    scopus 로고
    • A methodology for direct and indirect discrimination prevention in data mining
    • Hajian S, Domingo-Ferrer J (2013) A methodology for direct and indirect discrimination prevention in data mining. IEEE Trans Knowl Data Eng 25(7):1445–1459
    • (2013) IEEE Trans Knowl Data Eng , vol.25 , Issue.7 , pp. 1445-1459
    • Hajian, S.1    Domingo-Ferrer, J.2
  • 28
    • 84906788791 scopus 로고    scopus 로고
    • Generalization-based privacy preservation and discrimination prevention in data publishing and mining
    • Hajian S, Domingo-Ferrer J, Farras O (2014) Generalization-based privacy preservation and discrimination prevention in data publishing and mining. Data Min Knowl Discov 28(5–6):1158–1188
    • (2014) Data Min Knowl Discov , vol.28 , Issue.5-6 , pp. 1158-1188
    • Hajian, S.1    Domingo-Ferrer, J.2    Farras, O.3
  • 31
    • 23844543914 scopus 로고    scopus 로고
    • Spatial analysis of historical redlining: a methodological explanation
    • Hillier A (2003) Spatial analysis of historical redlining: a methodological explanation. J Hous Res 14(1):137–168
    • (2003) J Hous Res , vol.14 , Issue.1 , pp. 137-168
    • Hillier, A.1
  • 32
    • 85020994267 scopus 로고    scopus 로고
    • Classification without discrimination. In: Proceedings nd IC4 conference on computer, control and communication
    • Kamiran F, Calders T (2009) Classification without discrimination. In: Proceedings nd IC4 conference on computer, control and communication, pp 1–6
    • (2009) Pp 1–6
    • Kamiran, F.1    Calders, T.2
  • 33
    • 79951740264 scopus 로고    scopus 로고
    • Discrimination aware decision tree learning
    • IEEE international conference on data mining, ICDM
    • Kamiran F, Calders T, Pechenizkiy M (2010) Discrimination aware decision tree learning. In: Proceedings of the 2010 IEEE international conference on data mining, ICDM, pp 869–874
    • (2010) Proceedings of the , vol.2010 , pp. 869-874
    • Kamiran, F.1    Calders, T.2    Pechenizkiy, M.3
  • 34
    • 84877110194 scopus 로고    scopus 로고
    • Quantifying explainable discrimination and removing illegal discrimination in automated decision making
    • Kamiran F, Zliobaite I, Calders T (2013) Quantifying explainable discrimination and removing illegal discrimination in automated decision making. Knowl Inf Syst 35(3):613–644
    • (2013) Knowl Inf Syst , vol.35 , Issue.3 , pp. 613-644
    • Kamiran, F.1    Zliobaite, I.2    Calders, T.3
  • 35
    • 84866854564 scopus 로고    scopus 로고
    • Fairness-aware classifier with prejudice remover regularizer. In: Proceedings of European conference on machine learning and knowledge discovery in databases, ECMLPKDD
    • Kamishima T, Akaho S, Asoh H, Sakuma J (2012) Fairness-aware classifier with prejudice remover regularizer. In: Proceedings of European conference on machine learning and knowledge discovery in databases, ECMLPKDD, pp 35–50
    • (2012) Pp 35–50
    • Kamishima, T.1    Akaho, S.2    Asoh, H.3    Sakuma, J.4
  • 37
    • 80052678955 scopus 로고    scopus 로고
    • K-NN as an implementation of situation testing for discrimination discovery and prevention
    • Luong BT, Ruggieri S, Turini F KDD, pp 502–510
    • Luong BT, Ruggieri S, Turini F (2011) k-NN as an implementation of situation testing for discrimination discovery and prevention. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD, pp 502–510
    • (2011) In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining
  • 38
    • 84900866164 scopus 로고    scopus 로고
    • Combating discrimination using bayesian networks
    • Mancuhan K, Clifton C (2014) Combating discrimination using bayesian networks. Artif Intell Law 22(2):211–238
    • (2014) Artif Intell Law , vol.22 , Issue.2 , pp. 211-238
    • Mancuhan, K.1    Clifton, C.2
  • 39
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60
    • (1947) Ann Math Stat , vol.18 , Issue.1 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 40
    • 84959801619 scopus 로고
    • Statistical aspects of the analysis of data from retrospective studies of disease
    • Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Nat Cancer Inst 22(4):719–748
    • (1959) J Nat Cancer Inst , vol.22 , Issue.4 , pp. 719-748
    • Mantel, N.1    Haenszel, W.2
  • 41
    • 84900841529 scopus 로고    scopus 로고
    • Special issue: computational methods for enforcing privacy and fairness in the knowledge society
    • Mascetti S, Ricci A, Ruggieri S (2014) Special issue: computational methods for enforcing privacy and fairness in the knowledge society. Artif Intell Law 22:109
    • (2014) Artif Intell Law , vol.22 , pp. 109
    • Mascetti, S.1    Ricci, A.2    Ruggieri, S.3
  • 42
    • 85006995348 scopus 로고    scopus 로고
    • When algorithms discriminate
    • Miller CC (2015) When algorithms discriminate. New York Times. http://www.nytimes.com/2015/07/10/upshot/when-algorithms-discriminate.html
    • (2015) New York Times
    • Miller, C.C.1
  • 43
    • 85020361254 scopus 로고    scopus 로고
    • More accountability for big-data algorithms
    • Nature Editorial (2016) More accountability for big-data algorithms. Nature 537(7621):449
    • (2016) Nature , vol.537 , Issue.7621 , pp. 449
    • Editorial, N.1
  • 44
    • 65449163899 scopus 로고    scopus 로고
    • Discrimination-aware data mining. In: Proceedings of the 14th ACM SIGKDD International Conference on knowledge discovery and data mining, KDD
    • Pedreschi D, Ruggieri S, Turini F (2008) Discrimination-aware data mining. In: Proceedings of the 14th ACM SIGKDD International Conference on knowledge discovery and data mining, KDD, pp 560–568
    • (2008) Pp 560–568
    • Pedreschi, D.1    Ruggieri, S.2    Turini, F.3
  • 45
    • 72749094725 scopus 로고    scopus 로고
    • Measuring discrimination in socially-sensitive decision records. In: Proceedings of the SIAM international conference on data mining, SDM
    • Pedreschi D, Ruggieri S, Turini F (2009) Measuring discrimination in socially-sensitive decision records. In: Proceedings of the SIAM international conference on data mining, SDM, pp 581–592
    • (2009) Pp 581–592
    • Pedreschi, D.1    Ruggieri, S.2    Turini, F.3
  • 46
    • 84863576417 scopus 로고    scopus 로고
    • A study of top-k measures for discrimination discovery. In: Proceedings of the 27th annual acm symposium on applied computing, SAC
    • Pedreschi D, Ruggieri S, Turini F (2012) A study of top-k measures for discrimination discovery. In: Proceedings of the 27th annual acm symposium on applied computing, SAC, pp 126–131
    • (2012) Pp 126–131
    • Pedreschi, D.1    Ruggieri, S.2    Turini, F.3
  • 47
    • 84900849170 scopus 로고    scopus 로고
    • A multidisciplinary survey on discrimination analysis
    • Romei A, Ruggieri S (2014) A multidisciplinary survey on discrimination analysis. Knowl Eng Rev 29(5):582–638
    • (2014) Knowl Eng Rev , vol.29 , Issue.5 , pp. 582-638
    • Romei, A.1    Ruggieri, S.2
  • 48
    • 84878901742 scopus 로고    scopus 로고
    • Discrimination discovery in scientific project evaluation: a case study
    • Romei A, Ruggieri S, Turini F (2013) Discrimination discovery in scientific project evaluation: a case study. Expert Syst Appl 40(15):6064–6079
    • (2013) Expert Syst Appl , vol.40 , Issue.15 , pp. 6064-6079
    • Romei, A.1    Ruggieri, S.2    Turini, F.3
  • 50
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 1:41–55
    • (1983) Biometrika , vol.1 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 51
    • 84906734280 scopus 로고    scopus 로고
    • Using t-closeness anonymity to control for non-discrimination
    • Ruggieri S (2014) Using t-closeness anonymity to control for non-discrimination. Trans Data Priv 7(2):99–129
    • (2014) Trans Data Priv , vol.7 , Issue.2 , pp. 99-129
    • Ruggieri, S.1
  • 54
    • 0037753593 scopus 로고    scopus 로고
    • Ph.D. thesis: Delft University of Technology
    • Tax D (2001) One-class classification. Ph.D. thesis, Delft University of Technology
    • (2001) One-class classification
    • Tax, D.1
  • 55
    • 85005995505 scopus 로고    scopus 로고
    • Big data: a report on algorithmic systems, opportunity, and civil rights
    • The White House (2016) Big data: a report on algorithmic systems, opportunity, and civil rights. Executive office of the president. https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/2016_0504_data_discrimination.pdf
    • (2016) Executive office of the president
    • House, T.W.1
  • 56
    • 34748873053 scopus 로고    scopus 로고
    • Multi-label classification: an overview
    • Tsoumakas G, Katakis I (2007) Multi-label classification: an overview. Int J Data Warehous Min 3(3):1–13
    • (2007) Int J Data Warehous Min , vol.3 , Issue.3 , pp. 1-13
    • Tsoumakas, G.1    Katakis, I.2
  • 57
    • 85021022431 scopus 로고    scopus 로고
    • Research on e-commerce, algorithms and big data, Journalist’s resource
    • Wihbey J (2015) The possibilities of digital discrimination: Research on e-commerce, algorithms and big data. Journalist’s resource. https://journalistsresource.org/studies/society/internet/possibilities-online-racial-discrimination-research-airbnb
    • (2015) The possibilities of digital discrimination
    • Wihbey, J.1
  • 58
    • 0022843928 scopus 로고
    • Measuring racial discrimination with fair housing audits: caught in the act
    • Yinger J (1986) Measuring racial discrimination with fair housing audits: caught in the act. Am Econ Rev 76(5):881–893
    • (1986) Am Econ Rev , vol.76 , Issue.5 , pp. 881-893
    • Yinger, J.1
  • 59
    • 84938910304 scopus 로고    scopus 로고
    • Learning fair representations. In: Proceedings of the 30th international conference on machine learning
    • Zemel RS, Wu Y, Swersky K, Pitassi T, Dwork C (2013) Learning fair representations. In: Proceedings of the 30th international conference on machine learning, pp 325–333
    • (2013) Pp 325–333
    • Zemel, R.S.1    Wu, Y.2    Swersky, K.3    Pitassi, T.4    Dwork, C.5
  • 60
    • 85006085637 scopus 로고    scopus 로고
    • Situation testing-based discrimination discovery: A causal inference approach. In: Proceedings of the 25th international joint conference on artificial intelligence, IJCAI
    • Zhang L, Wu Y, Wu X (2016) Situation testing-based discrimination discovery: A causal inference approach. In: Proceedings of the 25th international joint conference on artificial intelligence, IJCAI, pp 2718–2724
    • (2016) Pp 2718–2724
    • Zhang, L.1    Wu, Y.2    Wu, X.3
  • 61
    • 85021067441 scopus 로고    scopus 로고
    • On the relation between accuracy and fairness in binary classification. In: The 2nd workshop on fairness, accountability
    • Zliobaite I (2015) On the relation between accuracy and fairness in binary classification. In: The 2nd workshop on fairness, accountability, and transparency in machine learning (FATML) at ICML’15
    • (2015) And transparency in machine learning (FATML) at ICML’15
    • Zliobaite, I.1
  • 62
    • 84966344964 scopus 로고    scopus 로고
    • Using sensitive personal data may be necessary for avoiding discrimination in data-driven decision models
    • Zliobaite I, Custers B (2016) Using sensitive personal data may be necessary for avoiding discrimination in data-driven decision models. Artif Intell Law 24(2):183–201
    • (2016) Artif Intell Law , vol.24 , Issue.2 , pp. 183-201
    • Zliobaite, I.1    Custers, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.