-
3
-
-
84856446756
-
Fairness through awareness
-
C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through awareness. In Proc. of Innovations in Theoretical Computer Science, 2012.
-
(2012)
Proc. of Innovations in Theoretical Computer Science
-
-
Dwork, C.1
Hardt, M.2
Pitassi, T.3
Reingold, O.4
Zemel, R.5
-
4
-
-
50949133669
-
Liblinear: A library for large linear classification
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for large linear classification. J. of Machine Learning Research, 9:1871-1874, 2008.
-
(2008)
J. of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
5
-
-
84954166377
-
-
CoRR, abs/1412.3756
-
M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian. Certifying and removing disparate impact. CoRR, abs/1412.3756, 2014.
-
(2014)
Certifying and Removing Disparate Impact
-
-
Feldman, M.1
Friedler, S.A.2
Moeller, J.3
Scheidegger, C.4
Venkatasubramanian, S.5
-
7
-
-
31844446804
-
A support vector method for multivariate performance measures
-
ACM
-
T. Joachims. A support vector method for multivariate performance measures. In Proc. of Intl. Conf. on Machine Learning, pages 377-384. ACM, 2005.
-
(2005)
Proc. of Intl. Conf. on Machine Learning
, pp. 377-384
-
-
Joachims, T.1
-
9
-
-
84866854564
-
Fairness-aware classifier with prejudice remover regularizer
-
T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma. Fairness-aware classifier with prejudice remover regularizer. Machine Learning and Knowledge Discovery in Databases, pages 35-50, 2012.
-
(2012)
Machine Learning and Knowledge Discovery in Databases
, pp. 35-50
-
-
Kamishima, T.1
Akaho, S.2
Asoh, H.3
Sakuma, J.4
-
11
-
-
80052678955
-
K-nn as an implementation of situation testing for discrimination discovery and prevention
-
B. T. Luong, S. Ruggieri, and F. Turini. k-nn as an implementation of situation testing for discrimination discovery and prevention. In Proc. of Intl. Conf. on Knowledge Discovery and Data Mining, KDD'11, pages 502-510, 2011.
-
(2011)
Proc. of Intl. Conf. on Knowledge Discovery and Data Mining, KDD'11
, pp. 502-510
-
-
Luong, B.T.1
Ruggieri, S.2
Turini, F.3
-
12
-
-
84991373847
-
On the statistical consistency of algorithms for binary classification under class imbalance
-
A. Menon, H. Narasimhan, S. Agarwal, and S. Chawla. On the statistical consistency of algorithms for binary classification under class imbalance. In Proc. 30th. ICM, pages 603-611, 2013.
-
(2013)
Proc. 30th. ICM
, pp. 603-611
-
-
Menon, A.1
Narasimhan, H.2
Agarwal, S.3
Chawla, S.4
-
13
-
-
84970908216
-
Did the results of promotion exams have a disparate impact on minorities? Using statistical evidence in ricci v
-
W. Miao. Did the results of promotion exams have a disparate impact on minorities? Using statistical evidence in Ricci v. DeStefano. J. of Stat. Ed., 19(1), 2011.
-
(2011)
DeStefano. J. of Stat. Ed.
, vol.19
, Issue.1
-
-
Miao, W.1
-
14
-
-
70450177923
-
Integrating induction and deduction for finding evidence of discrimination
-
D. Pedreschi, S. Ruggieri, and F. Turini. Integrating induction and deduction for finding evidence of discrimination. In Proc. of Intl. Conf. on Artificial Intelligence and Law, ICAIL'09, pages 157-166, 2009.
-
(2009)
Proc. of Intl. Conf. on Artificial Intelligence and Law, ICAIL'09
, pp. 157-166
-
-
Pedreschi, D.1
Ruggieri, S.2
Turini, F.3
-
15
-
-
84863576417
-
A study of top-k measures for discrimination discovery
-
D. Pedreschi, S. Ruggieri, and F. Turini. A study of top-k measures for discrimination discovery. In Proc. of Symposium on Applied Computing, SAC'12, pages 126-131, 2012.
-
(2012)
Proc. of Symposium on Applied Computing, SAC'12
, pp. 126-131
-
-
Pedreschi, D.1
Ruggieri, S.2
Turini, F.3
-
16
-
-
68949194130
-
Toward a coherent test for disparate impact discrimination
-
J. L. Peresie. Toward a coherent test for disparate impact discrimination. Indiana Law Journal, 84(3):Article 1, 2009.
-
(2009)
Indiana Law Journal
, vol.84
, Issue.3
-
-
Peresie, J.L.1
-
17
-
-
84926623018
-
-
Executive Office of the President, May
-
J. Podesta, P. Pritzker, E. J. Moniz, J. Holdren, and J. Zients. Big data: seizing opportunities, preserving values. Executive Office of the President, May 2014.
-
(2014)
Big Data: Seizing Opportunities, Preserving Values
-
-
Podesta, J.1
Pritzker, P.2
Moniz, E.J.3
Holdren, J.4
Zients, J.5
-
18
-
-
84900849170
-
A multidisciplinary survey on discrimination analysis
-
April 3
-
A. Romei and S. Ruggieri. A multidisciplinary survey on discrimination analysis. The Knowledge Engineering Review, pages 1-57, April 3 2013.
-
(2013)
The Knowledge Engineering Review
, pp. 1-57
-
-
Romei, A.1
Ruggieri, S.2
-
23
-
-
84954139209
-
-
Feb. 27
-
The Leadership Conference. Civil rights principles for the era of big data. http://www.civilrights.org/press/2014/civil-rights-principles-big-data.html, Feb. 27, 2014.
-
(2014)
Civil Rights Principles for the Era of Big Data
-
-
-
25
-
-
84897542525
-
Learning fair representations
-
R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. Learning fair representations. In Proc. of Intl. Conf. on Machine Learning, pages 325-333, 2013.
-
(2013)
Proc. of Intl. Conf. on Machine Learning
, pp. 325-333
-
-
Zemel, R.1
Wu, Y.2
Swersky, K.3
Pitassi, T.4
Dwork, C.5
-
26
-
-
84877630464
-
Beyond fano's inequality: Bounds on the optimal F-score, BER, and cost-sensitive risk and their implications
-
M.-J. Zhao, N. Edakunni, A. Pocock, and G. Brown. Beyond Fano's inequality: bounds on the optimal F-score, BER, and cost-sensitive risk and their implications. J. of Machine Learning Research, 14(1):1033-1090, 2013.
-
(2013)
J. of Machine Learning Research
, vol.14
, Issue.1
, pp. 1033-1090
-
-
Zhao, M.-J.1
Edakunni, N.2
Pocock, A.3
Brown, G.4
|