메뉴 건너뛰기




Volumn 7524 LNAI, Issue PART 2, 2012, Pages 35-50

Fairness-aware classifier with prejudice remover regularizer

Author keywords

classification; discrimination; fairness; information theory; logistic regression; social responsibility

Indexed keywords

ANALYSIS TECHNIQUES; CREDIT DATA; CREDIT SCORING; DATA MINING TECHNOLOGY; DISCRIMINATION; DISCRIMINATIVE MODELS; FAIRNESS; LOGISTIC REGRESSIONS; PREDICTION ALGORITHMS; REGULARIZATION APPROACH; REGULARIZER; SENSITIVE FEATURES; SENSITIVE INFORMATIONS; SOCIAL RESPONSIBILITIES; STATISTICAL PREDICTION;

EID: 84866854564     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-33486-3_3     Document Type: Conference Paper
Times cited : (767)

References (24)
  • 3
    • 77958063401 scopus 로고    scopus 로고
    • Three naive bayes approaches for discrimination-free classification
    • Calders, T., Verwer, S.: Three naive bayes approaches for discrimination-free classification. Data Mining and Knowledge Discovery 21, 277-292 (2010)
    • (2010) Data Mining and Knowledge Discovery , vol.21 , pp. 277-292
    • Calders, T.1    Verwer, S.2
  • 7
    • 78649934709 scopus 로고    scopus 로고
    • School of Information and Computer Sciences, Irvine
    • Frank, A., Asuncion, A.: UCI machine learning repository. School of Information and Computer Sciences, University of California, Irvine (2010), http://archive.ics.uci.edu/ml
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 14
    • 70350674448 scopus 로고    scopus 로고
    • Private data analysis via output perturbation
    • Aggarwal, C.C., Yu, P.S. (eds.) ch. 4. Springer
    • Nissim, K.: Private data analysis via output perturbation. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining: Models and Algorithms, ch. 4. Springer (2008)
    • (2008) Privacy-Preserving Data Mining: Models and Algorithms
    • Nissim, K.1
  • 21
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3, 583-617 (2002)
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 24
    • 14344263218 scopus 로고    scopus 로고
    • Learning and evaluating classifiers under sample selection bias
    • Zadrozny, B.: Learning and evaluating classifiers under sample selection bias. In: Proc. of the 21st Int'l Conf. on Machine Learning, pp. 903-910 (2004)
    • (2004) Proc. of the 21st Int'l Conf. on Machine Learning , pp. 903-910
    • Zadrozny, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.