메뉴 건너뛰기




Volumn 4, Issue 2, 2010, Pages

Data mining for discrimination discovery

Author keywords

Classification rules; Discrimination

Indexed keywords

AUTOMATIC DECISION; AUTOMATIC PROCEDURES; AUTOMATIC SYSTEMS; BACKGROUND KNOWLEDGE; CENSUS DATA; CIVIL RIGHTS; CLASSIFICATION RULES; CREDIT SCORING; DATA ANALYSTS; DATA COLLECTION; DATA SETS; EMPIRICAL ASSESSMENT; HUMAN SCIENCE; INFERENCE MODELS; LABOR MARKETS; MINING PROCESS;

EID: 77953188096     PISSN: 15564681     EISSN: 1556472X     Source Type: Journal    
DOI: 10.1145/1754428.1754432     Document Type: Article
Times cited : (145)

References (50)
  • 3
    • 77953191749 scopus 로고    scopus 로고
    • AUSTRALIAN LEGISLATION. 2009. (a) Equal Opportunity Act-Victoria State, (b) Anti-Discrimination Act-Queensland State
    • AUSTRALIAN LEGISLATION. 2009. (a) Equal Opportunity Act-Victoria State, (b) Anti-Discrimination Act-Queensland State. http://www.austlii.edu.au.
  • 7
    • 34248545092 scopus 로고    scopus 로고
    • Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry
    • CHIEN, C.-F. AND CHEN, L. 2008. Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry. Exp. Syst. Appl. 34, 1, 280-290.
    • (2008) Exp. Syst. Appl , vol.34 , Issue.1 , pp. 280-290
    • Chien, C.-F.1    Chen, L.2
  • 9
    • 77953195721 scopus 로고    scopus 로고
    • EUROPEAN UNION LEGISLATION. 2009. (a) Racial Equality Directive, (b) Employment Equality Directive
    • EUROPEAN UNION LEGISLATION. 2009. (a) Racial Equality Directive, (b) Employment Equality Directive. http://ec.europa.eu/employment social/fundamental rights.
  • 10
    • 0042453426 scopus 로고
    • Statistical reasoning in the legal setting
    • GASTWIRTH, J. L. 1992. Statistical reasoning in the legal setting. Amer. Statist. 46, 1, 55-69.
    • (1992) Amer. Statist. , vol.46 , Issue.1 , pp. 55-69
    • Gastwirth, J.L.1
  • 12
    • 0035480925 scopus 로고    scopus 로고
    • Modelling consumer credit risk
    • HAND, D. J. 2001. Modelling consumer credit risk. IMA J. Manag. Math. 12, 139-155.
    • (2001) IMA J. Manag. Math , vol.12 , pp. 139-155
    • Hand, D.J.1
  • 13
    • 0040453788 scopus 로고    scopus 로고
    • Statistical classificationmethods in consumer credit scoring: A review
    • HAND, D. J. AND HENLEY,W. E. 1997. Statistical classificationmethods in consumer credit scoring: A review. J. Royal Statist. Soc. Series A 160, 523-541.
    • (1997) J. Royal Statist. Soc. Series A , vol.160 , pp. 523-541
    • Hand, D.J.1    Henley, W.E.2
  • 16
    • 4644249356 scopus 로고    scopus 로고
    • Black job applicants and the hiring officer's race
    • HOLZER, H., RAPHAEL, S., AND STOLL, M. 2004. Black job applicants and the hiring officer's race. Industr. Labor Relat. Rev. 57, 2, 267-287.
    • (2004) Industr. Labor Relat. Rev , vol.57 , Issue.2 , pp. 267-287
    • Holzer, H.1    Raphael, S.2    Stoll, M.3
  • 17
    • 33645758672 scopus 로고    scopus 로고
    • Affirmative action: What do we know?
    • HOLZER, H. J. AND NEUMARK, D. 2006. Affirmative action: What do we know? J. Policy Anal. Manag. 25, 463-490.
    • (2006) J. Policy Anal. Manag , vol.25 , pp. 463-490
    • Holzer, H.J.1    Neumark, D.2
  • 21
    • 84928445228 scopus 로고
    • On proving discrimination: Statistical methods and unfolding policy logics
    • KNOPFF, R. 1986. On proving discrimination: Statistical methods and unfolding policy logics. Canad. Pub. Policy 12, 573-583.
    • (1986) Canad. Pub. Policy , vol.12 , pp. 573-583
    • Knopff, R.1
  • 23
    • 0001113335 scopus 로고
    • Sex discrimination in labor markets: The role of statistical evidence
    • KUHN, P. 1987. Sex discrimination in labor markets: The role of statistical evidence. Amer. Econ. Rev. 77, 567-583.
    • (1987) Amer. Econ. Rev. , vol.77 , pp. 567-583
    • Kuhn, P.1
  • 24
    • 0001883851 scopus 로고    scopus 로고
    • Discrimination in mortgage lending: A critical review of the literature
    • LACOUR-LITTLE, M. 1999. Discrimination in mortgage lending: A critical review of the literature. J. Real Estate Lit. 7, 15-50.
    • (1999) J. Real Estate Lit , vol.7 , pp. 15-50
    • Lacour-Little, M.1
  • 31
    • 33750867688 scopus 로고    scopus 로고
    • Approaches for dealing with small sample sizes in employment discrimination litigation
    • PIETTE, M. J. AND WHITE, P. F. 1999. Approaches for dealing with small sample sizes in employment discrimination litigation. J. Foren. Econ. 12, 43-56.
    • (1999) J. Foren. Econ , vol.12 , pp. 43-56
    • Piette, M.J.1    White, P.F.2
  • 32
    • 9144243053 scopus 로고    scopus 로고
    • Logic of association rules
    • RAUCH, J. 2005. Logic of association rules. Appl. Intell. 22, 1, 9-28.
    • (2005) Appl. Intell , vol.22 , Issue.1 , pp. 9-28
    • Rauch, J.1
  • 33
    • 33846442786 scopus 로고    scopus 로고
    • Mining for association rules by 4ft-Miner
    • Prolog Association of Japan
    • RAUCH, J. AND SIMUNEK, M. 2001. Mining for association rules by 4ft-Miner. In Proceedings of the INAP 2001. Prolog Association of Japan, 285-295.
    • (2001) Proceedings of the INAP 2001 , pp. 285-295
    • Rauch, J.1    Simunek, M.2
  • 35
    • 0036863130 scopus 로고    scopus 로고
    • Field experiments of discrimination in the market place
    • RIACH, P. A. AND RICH, J. 2002. Field experiments of discrimination in the market place. Econ. J. 112, 480-518.
    • (2002) Econ. J. , vol.112 , pp. 480-518
    • Riach, P.A.1    Rich, J.2
  • 36
    • 1942456539 scopus 로고    scopus 로고
    • Racial profiling, insurance style: Insurance redlining and the uneven development of metropolitan areas
    • SQUIRES, G. D. 2003. Racial profiling, insurance style: Insurance redlining and the uneven development of metropolitan areas. J. Urban Affairs 25, 4, 391-410.
    • (2003) J. Urban Affairs , vol.25 , Issue.4 , pp. 391-410
    • Squires, G.D.1
  • 39
    • 0036811143 scopus 로고    scopus 로고
    • Achieving k-anonymity privacy protection using generalization and suppression
    • SWEENEY, L. 2002. Achieving k-anonymity privacy protection using generalization and suppression. Int. J. Uncertain. Fuzz. Knowl.-Bas. Syst. 10, 5, 571-588.
    • (2002) Int. J. Uncertain. Fuzz. Knowl.-Bas. Syst , vol.10 , Issue.5 , pp. 571-588
    • Sweeney, L.1
  • 40
    • 1242308945 scopus 로고    scopus 로고
    • Selecting the right objective measure for association analysis
    • TAN, P.-N., KUMAR, V., AND SRIVASTAVA, J. 2004. Selecting the right objective measure for association analysis. Inform. Syst. 29, 4, 293-313.
    • (2004) Inform. Syst , vol.29 , Issue.4 , pp. 293-313
    • Tan, P.-N.1    Kumar, V.2    Srivastava, J.3
  • 41
    • 0001466281 scopus 로고    scopus 로고
    • A survey of credit and behavioural scoring: Forecasting financial risk of lending to consumers
    • THOMAS, L. C. 2000. A survey of credit and behavioural scoring: Forecasting financial risk of lending to consumers. Int. J. Forecast. 16, 149-172.
    • (2000) Int. J. Forecast , vol.16 , pp. 149-172
    • Thomas, L.C.1
  • 42
    • 77953211567 scopus 로고    scopus 로고
    • U.K. LEGISLATION. 2009. (a) Sex Discrimination Act, (b) Race Relation Act
    • U.K. LEGISLATION. 2009. (a) Sex Discrimination Act, (b) Race Relation Act. http://www.statutelaw.gov.uk.
  • 43
    • 77953211350 scopus 로고    scopus 로고
    • U.S. FEDERAL LEGISLATION. 2009. (a) Equal Credit Opportunity Act, (b) Fair Housing Act, (c) Intentional Employment Discrimination, (d) Equal Pay Act, (e) Pregnancy Discrimination Act
    • U.S. FEDERAL LEGISLATION. 2009. (a) Equal Credit Opportunity Act, (b) Fair Housing Act, (c) Intentional Employment Discrimination, (d) Equal Pay Act, (e) Pregnancy Discrimination Act. http://www.usdoj.gov.
  • 46
    • 1842451173 scopus 로고    scopus 로고
    • A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection
    • VIAENE, S.,DERRIG, R. A.,BAESENS, B., AND DEDENE, G. 2001. A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection. J. Risk Insur. 69, 3, 373-421.
    • (2001) J. Risk Insur. , vol.69 , Issue.3 , pp. 373-421
    • Viaene, S.1    Derrig, R.A.2    Baesens, B.3    Dedene, G.4
  • 47
  • 49
    • 3843055627 scopus 로고    scopus 로고
    • Efficient mining of both positive and negative association rules
    • WU, X., ZHANG, C., AND ZHANG, S. 2004. Efficient mining of both positive and negative association rules. ACM Trans. Inform. Syst. 22, 3, 381-405.
    • (2004) ACM Trans. Inform. Syst , vol.22 , Issue.3 , pp. 381-405
    • Wu, X.1    Zhang, C.2    Zhang, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.