메뉴 건너뛰기




Volumn 67, Issue , 2017, Pages

Inherent trade-offs in the fair determination of risk scores

Author keywords

algorithmic fairness; calibration; risk tools

Indexed keywords

CALIBRATION; COMMERCE;

EID: 85021028155     PISSN: 18688969     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.4230/LIPIcs.ITCS.2017.43     Document Type: Conference Paper
Times cited : (693)

References (20)
  • 1
    • 85016310619 scopus 로고    scopus 로고
    • Machine bias: Theres software used across the country to predict future criminals. and its biased against blacks
    • May 23
    • Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias: Theres software used across the country to predict future criminals. And its biased against blacks. ProPublica, May 23, 2016. URL: https://www.propublica.org/article/machine-bias-risk-Assessments-in-criminal-sentencing
    • (2016) ProPublica
    • Angwin, J.1    Larson, J.2    Mattu, S.3    Kirchner, L.4
  • 3
    • 77958063401 scopus 로고    scopus 로고
    • Three naive bayes approaches for discrimination-free classification
    • Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-free classification. Data Mining and Knowledge Discovery, 21(2):277-292, 2010
    • (2010) Data Mining and Knowledge Discovery , vol.21 , Issue.2 , pp. 277-292
    • Calders, T.1    Verwer, S.2
  • 5
    • 84941247198 scopus 로고    scopus 로고
    • Automated experiments on ad privacy settings
    • Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated experiments on ad privacy settings. Proceedings on Privacy Enhancing Technologies, 2015(1):92-112, 2015. URL: http://www.degruyter.com/view/j/popets.2015.1 issue-1/popets-2015-0007/popets-2015-0007.xml
    • (2015) Proceedings on Privacy Enhancing Technologies , vol.1 , pp. 92-112
    • Datta, A.1    Carl Tschantz, M.2    Datta, A.3
  • 8
    • 84954161181 scopus 로고    scopus 로고
    • Certifying and removing disparate impact. in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • KDD 15, pages 259-268, New York, NY, USA, 2015. ACM.
    • Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian Certifying and removing disparate impact. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 15, pages 259-268, New York, NY, USA, 2015. ACM. doi:10.1145/2783258.2783311
    • (2015) Proceedings of the 21th , pp. 259-268
    • Feldman, M.1    Friedler, S.A.2    Moeller, J.3    Scheidegger, C.4    Venkatasubramanian, S.5
  • 9
    • 85038576805 scopus 로고    scopus 로고
    • False positives, false negatives, and false analyses: A rejoinder to "machine bias: Theres software used across the country to predict future criminals. and its biased against blacks
    • September 2016. URL
    • Anthony Flores, Christopher Lowenkamp, and Kristin Bechtel. False positives, false negatives, and false analyses: A rejoinder to "machine bias: Theres software used across the country to predict future criminals. and its biased against blacks.". Technical report, Crime & Justice Institute, September 2016. URL: http://www.crj.org/cji/entry/false-positives-false-negatives-And-false-Analyses-A-rejoinder
    • (2016) Technical Report, Crime & Justice Institute
    • Flores, A.1    Lowenkamp, C.2    Bechtel, K.3
  • 10
    • 0037539108 scopus 로고    scopus 로고
    • Vohra. Asymptotic calibration
    • Dean P. Foster and Rakesh V. Vohra. Asymptotic calibration. Biometrika, 85(2):379-390, 1998
    • (1998) Biometrika , vol.85 , Issue.2 , pp. 379-390
    • Foster, D.P.1    Rakesh, V.2
  • 11
    • 0002203027 scopus 로고    scopus 로고
    • Garb. Race bias, social class bias, and gender bias in clinical judgment
    • Howard N. Garb. Race bias, social class bias, and gender bias in clinical judgment. Clinical Psychology: Science and Practice, 4(2):99-120, 1997
    • (1997) Clinical Psychology: Science and Practice , vol.4 , Issue.2 , pp. 99-120
    • Howard, N.1
  • 12
    • 85038573393 scopus 로고    scopus 로고
    • Ethics for powerful algorithms (1 of 4
    • July 12
    • Abe Gong. Ethics for powerful algorithms (1 of 4). Medium, July 12, 2016. URL: https: //medium.com/@AbeGong/ethics-for-powerful-Algorithms-1-of-3-A060054efd84# .dhsd2ut3i
    • (2016) Medium
    • Gong, A.1
  • 15
    • 85029077504 scopus 로고    scopus 로고
    • How we analyzed the COMPAS recidivism algorithm
    • May 23
    • Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How we analyzed the COMPAS recidivism algorithm. ProPublica, May 23, 2016. URL: https://www.propublica org/article/how-we-Analyzed-The-compas-recidivism-Algorithm
    • (2016) ProPublica
    • Larson, J.1    Mattu, S.2    Kirchner, L.3    Angwin, J.4
  • 17
    • 85038600169 scopus 로고    scopus 로고
    • Propublica analysis. URL: https://docs.google.com/document/d/1pKtyl8XmJH7Z09lxkb70n6fa2Fiitd7ydbxgCT-wCXs/edit?pref=2&pli=1
    • Propublica Analysis
  • 18
    • 84877913053 scopus 로고    scopus 로고
    • Discrimination in online ad delivery
    • Latanya Sweeney. Discrimination in online ad delivery. Communications of the ACM, 56(5):44-54, 2013. doi:10.1145/2447976.2447990
    • (2013) Communications of the ACM , vol.56 , Issue.5 , pp. 44-54
    • Sweeney, L.1
  • 19
    • 58249106480 scopus 로고    scopus 로고
    • Discrimination and racial disparities in health: Evidence and needed research
    • David R. Williams and Selina A. Mohammed. Discrimination and racial disparities in health: Evidence and needed research. J. Med. Behav., 32(1), 2009
    • (2009) J. Med. Behav , vol.32 , pp. 1
    • Williams, D.R.1    Mohammed, S.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.