메뉴 건너뛰기




Volumn 8, Issue 6, 2015, Pages 2632-2643

Projection-based NMF for hyperspectral unmixing

Author keywords

Hyperspectral unmixing; nonnegative matrix factorization (NMF); spectral library; subspace projection

Indexed keywords

ALGORITHMS; FACTORIZATION; IMAGE RESOLUTION; SPECTROSCOPY;

EID: 85027918861     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2015.2427656     Document Type: Article
Times cited : (46)

References (47)
  • 1
    • 14644403023 scopus 로고    scopus 로고
    • Multispectral land sensing: Where from, where to?
    • Feb
    • D. Landgrebe, "Multispectral land sensing: Where from, where to?" IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 414-421, Feb. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 414-421
    • Landgrebe, D.1
  • 3
    • 84866481410 scopus 로고    scopus 로고
    • Remote sensing image subpixel mapping based on adaptive differential evolution
    • Sep
    • Y. Zhong and L. Zhang, "Remote sensing image subpixel mapping based on adaptive differential evolution," IEEE Trans. Syst. Man Cybern. B: Cybern., vol. 42, no. 5, pp. 1306-1329, Sep. 2012.
    • (2012) IEEE Trans. Syst. Man Cybern. B: Cybern , vol.42 , Issue.5 , pp. 1306-1329
    • Zhong, Y.1    Zhang, L.2
  • 4
    • 84880066314 scopus 로고    scopus 로고
    • Graph regularized lowrank representation for destriping of hyperspectral images
    • Jun
    • X. Lu, Y. Wang, Y. Yuan, P. Yan, and X. Li, "Graph regularized lowrank representation for destriping of hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 7, pp. 4009-4018, Jun. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.7 , pp. 4009-4018
    • Lu, X.1    Wang, Y.2    Yuan, Y.3    Yan, P.4    Li, X.5
  • 5
  • 7
    • 0002081183 scopus 로고
    • Automating spectral unmixing of avris data using convex geometry concepts
    • J. Boardman, "Automating spectral unmixing of AVRIS data using convex geometry concepts," in Proc. Summ. 4th Annu. JPL Airborne Geosci. Workshop, 1994, pp. 11-14.
    • (1994) Proc. Summ. 4th Annu. JPL Airborne Geosci. Workshop , pp. 11-14
    • Boardman, J.1
  • 8
    • 0033310314 scopus 로고    scopus 로고
    • N-findr: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE Int. Symp. Opt. Sci. Eng. Instrum., 1999, pp. 266-275.
    • (1999) Proc. SPIE Int. Symp. Opt. Sci. Eng. Instrum , pp. 266-275
    • Winter, M.1
  • 9
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr
    • J. Nascimento and J. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 10
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Oct
    • T. Chan, C. Chi, Y. Huang, and W. Ma, "A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Oct. 2009.
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.1    Chi, C.2    Huang, Y.3    Ma, W.4
  • 11
    • 84905922496 scopus 로고    scopus 로고
    • Subspace-projection-based geometric unmixing for material quantification in hyperspectral imagery
    • Aug
    • H. Yang, J. An, and C. Zhu, "Subspace-projection-based geometric unmixing for material quantification in hyperspectral imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 1966-1975, Aug. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , Issue.6 , pp. 1966-1975
    • Yang, H.1    An, J.2    Zhu, C.3
  • 12
    • 67649830104 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
    • J. Li and J. Bioucas-Dias, "Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2008, pp. 250-253.
    • (2008) Proc. IEEE Int. Geosci. Remote Sens. Symp , pp. 250-253
    • Li, J.1    Bioucas-Dias, J.2
  • 14
    • 84905916396 scopus 로고    scopus 로고
    • Multi-GPU implementation of the minimum volume simplex analysis algorithm for hyperspectral unmixing
    • Aug
    • A. Agathos, J. Li, D. Petcu, and A. Plaza, "Multi-GPU implementation of the minimum volume simplex analysis algorithm for hyperspectral unmixing," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2281-2296, Aug. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , Issue.6 , pp. 2281-2296
    • Agathos, A.1    Li, J.2    Petcu, D.3    Plaza, A.4
  • 16
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
    • May
    • J. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, May 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.1
  • 18
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data
    • Jan
    • J. Nascimento and J. Bioucas-Dias, "Does independent component analysis play a role in unmixing hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 175-187, Jan. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 19
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Mar
    • D. Heinz and C. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.1    Chang, C.2
  • 20
    • 84905898474 scopus 로고    scopus 로고
    • A data-driven stochastic approach for unmixing hyperspectral imagery
    • Aug
    • J. Bhatt, M. Joshi, and M. Raval, "A data-driven stochastic approach for unmixing hyperspectral imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 1936-1946, Aug. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , Issue.6 , pp. 1936-1946
    • Bhatt, J.1    Joshi, M.2    Raval, M.3
  • 21
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • Dec
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 2025-2041, Dec. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 22
    • 34548036670 scopus 로고    scopus 로고
    • Integration of spatial-spectral information for the improved extraction of endmembers
    • D. Rogge et al., "Integration of spatial-spectral information for the improved extraction of endmembers," Remote Sens. Environ., vol. 110, no. 3, pp. 287-303, 2007.
    • (2007) Remote Sens. Environ , vol.110 , Issue.3 , pp. 287-303
    • Rogge, D.1
  • 23
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • Jul
    • M. Zortea and A. Plaza, "Spatial preprocessing for endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679-2693, Jul. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 24
    • 84885021995 scopus 로고    scopus 로고
    • Manifold regularized sparse nmf for hyperspectral unmixing
    • Apr
    • X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, "Manifold regularized sparse NMF for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2815-2826, Apr. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.5 , pp. 2815-2826
    • Lu, X.1    Wu, H.2    Yuan, Y.3    Yan, P.4    Li, X.5
  • 25
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. Lee and H. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 26
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Feb
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Feb. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 27
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via l1/2 sparsity-constrained nonnegative matrix factorization
    • Oct
    • Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, "Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.11 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4
  • 29
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • V. Pauca, J. Piper, and R. Plemmons, "Nonnegative matrix factorization for spectral data analysis," Linear Algebra Its Appl., vol. 416, no. 1, pp. 29-47, 2006.
    • (2006) Linear Algebra Its Appl , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.1    Piper, J.2    Plemmons, R.3
  • 32
    • 84905910179 scopus 로고    scopus 로고
    • Non-local sparse unmixing for hyperspectral remote sensing imagery
    • Aug
    • Y. Zhong, R. Feng, and L. Zhang, "Non-local sparse unmixing for hyperspectral remote sensing imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 1889-1909, Aug. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , Issue.6 , pp. 1889-1909
    • Zhong, Y.1    Feng, R.2    Zhang, L.3
  • 33
    • 84905901018 scopus 로고    scopus 로고
    • Spatially constrained multiple endmember spectral mixture analysis for quantifying subpixel urban impervious surfaces
    • Aug
    • C. Wu, C. Deng, and X. Jia, "Spatially constrained multiple endmember spectral mixture analysis for quantifying subpixel urban impervious surfaces," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 1976-1984, Aug. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , Issue.6 , pp. 1976-1984
    • Wu, C.1    Deng, C.2    Jia, X.3
  • 34
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Oct
    • M. Iordache, J. Bioucas-Dias, and A. Plaza, "Total variation spatial regularization for sparse hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4484-4502, Oct. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.1    Bioucas-Dias, J.2    Plaza, A.3
  • 35
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. Lee and H. Seung, "Algorithms for non-negative matrix factorization," in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 556-562.
    • (2001) Proc. Adv. Neural Inf. Process. Syst , pp. 556-562
    • Lee, D.1    Seung, H.2
  • 36
    • 84879800501 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite functions
    • Y. Nesterov, "Gradient methods for minimizing composite functions," Math. Programm., vol. 140, no. 1, pp. 125-161, 2013.
    • (2013) Math. Programm , vol.140 , Issue.1 , pp. 125-161
    • Nesterov, Y.1
  • 37
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar
    • C. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.1    Du, Q.2
  • 38
    • 48849088937 scopus 로고    scopus 로고
    • Hyperspectral subspace identification
    • Jul
    • J. Bioucas-Dias and J. Nascimento, "Hyperspectral subspace identification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435-2445, Jul. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.8 , pp. 2435-2445
    • Bioucas-Dias, J.1    Nascimento, J.2
  • 39
    • 80455174036 scopus 로고    scopus 로고
    • Chanceconstrained robust minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Oct
    • A. Ambikapathi, T.-H. Chan, W.-K. Ma, and C.-Y. Chi, "Chanceconstrained robust minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4194-4209, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.11 , pp. 4194-4209
    • Ambikapathi, A.1    Chan, T.-H.2    Ma, W.-K.3    Chi, C.-Y.4
  • 40
    • 0003751241 scopus 로고
    • The U.S. Geological survey digital spectral library: Version 1: 0.2 to 3.0 microns
    • Denver, CO, USA, Open File Rep. 93-592
    • R. Clark, G. Swayze, A. Gallagher, T. King, and W. Calvin, "The U.S. geological survey digital spectral library: Version 1: 0.2 to 3.0 microns," U.S. Geological Survey, Denver, CO, USA, Open File Rep. 93-592, 1993.
    • (1993) U.S. Geological Survey
    • Clark, R.1    Swayze, G.2    Gallagher, A.3    King, T.4    Calvin, W.5
  • 42
    • 28444443232 scopus 로고    scopus 로고
    • Geometric registration and classification of hyperspectral airborne pushbroom data
    • J. Bethel, C. Lee, and D. Landgrebe, "Geometric registration and classification of hyperspectral airborne pushbroom data," Int. Arch. Photogramm. Remote Sens., vol. 33, no. B7/1, Part 7, pp. 183-190, 2000.
    • (2000) Int. Arch. Photogramm. Remote Sens , vol.33 , Issue.B71 , pp. 183-190
    • Bethel, J.1    Lee, C.2    Landgrebe, D.3
  • 43
    • 84910664859 scopus 로고    scopus 로고
    • Spectral unmixing via data-guided sparsity
    • Nov
    • F.-Y. Zhu et al., "Spectral unmixing via data-guided sparsity," IEEE Trans. Image Process., vol. 23, no. 12, pp. 5412-5427, Nov. 2014.
    • (2014) IEEE Trans. Image Process , vol.23 , Issue.12 , pp. 5412-5427
    • Zhu, F.-Y.1
  • 44
    • 84896314517 scopus 로고    scopus 로고
    • Double constrained nmf for hyperspectral unmixing
    • Mar
    • X. Lu, H. Wu, and Y. Yuan, "Double constrained NMF for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2746-2758, Mar. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.5 , pp. 2746-2758
    • Lu, X.1    Wu, H.2    Yuan, Y.3
  • 45
    • 84877927996 scopus 로고    scopus 로고
    • An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing
    • May
    • N.Wang, B. Du, and L. Zhang, "An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 554-569, May 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.6 , Issue.2 , pp. 554-569
    • Wang, N.1    Du, B.2    Zhang, L.3
  • 46
    • 65049088007 scopus 로고    scopus 로고
    • Orthogonal bases approach for the decomposition of mixed pixels in hyperspectral imagery
    • Apr
    • X. Tao, B. Wang, and L. Zhang, "Orthogonal bases approach for the decomposition of mixed pixels in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 219-223, Apr. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett , vol.6 , Issue.2 , pp. 219-223
    • Tao, X.1    Wang, B.2    Zhang, L.3
  • 47
    • 85028221435 scopus 로고    scopus 로고
    • [Online] Available
    • [Online]. Available: http://speclab.cr.usgs.gov/cuprite.html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.