메뉴 건너뛰기




Volumn 51, Issue 9, 2014, Pages 1911-1918

Remote sensing image classification based on DBN model

Author keywords

Deep belief network (DBN); Deep learning; Land cover classification; Remote sensing image; Restricted Boltzmann machine (RBM); Synthetic aperture radar (SAR)

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLUSTERING ALGORITHMS; IMAGE CLASSIFICATION; INFORMATION MANAGEMENT; LEARNING SYSTEMS; REMOTE SENSING; SUPPORT VECTOR MACHINES; SYNTHETIC APERTURE RADAR;

EID: 84908054616     PISSN: 10001239     EISSN: None     Source Type: Journal    
DOI: 10.7544/issn1000-1239.2014.20140199     Document Type: Article
Times cited : (47)

References (27)
  • 2
    • 0142009643 scopus 로고    scopus 로고
    • Optimum model-based segmentation techniques for multifrequency polarimetric SAR images of urban areas
    • Lombardo P, Sciotti M, Pellizzeri T M, et al. Optimum model-based segmentation techniques for multifrequency polarimetric SAR images of urban areas [J]. IEEE Trans on Geoscience and Remote Sensing, 2003, 41(9): 1959-1975
    • (2003) , vol.41 , Issue.9 , pp. 1959-1975
    • Lombardo, P.1    Sciotti, M.2    Pellizzeri, T.M.3
  • 3
    • 34548359491 scopus 로고    scopus 로고
    • A study of land cover classification using polarimetric SAR parameters
    • Alberga V. A study of land cover classification using polarimetric SAR parameters [J]. Int Journal of Remote Sensing, 2007, 28(17): 3851-3870
    • (2007) , vol.28 , Issue.17 , pp. 3851-3870
    • Alberga, V.1
  • 4
    • 34548420140 scopus 로고    scopus 로고
    • A method for calibrated maximum likelihood classification of forest types
    • Hagner O, Reese H. A method for calibrated maximum likelihood classification of forest types [J]. Remote Sensing of Environment, 2007, 110(4): 438-444
    • (2007) Remote Sensing of Environment , vol.110 , Issue.4 , pp. 438-444
    • Hagner, O.1    Reese, H.2
  • 5
    • 63249104262 scopus 로고    scopus 로고
    • Unsupervised classification of polarimetric SAR images by EM algorithm
    • Khan K U, Yang J, Zhang W. Unsupervised classification of polarimetric SAR images by EM algorithm [J]. IEICE Trans on Communications, 2007, E90-B(12): 3632-3642
    • (2007) , vol.E90-B , Issue.12 , pp. 3632-3642
    • Khan, K.U.1    Yang, J.2    Zhang, W.3
  • 6
    • 0026678254 scopus 로고
    • Classification of multispectral remote sensing data using a back-propagation neural network
    • Heermann P, Khazenie N. Classification of multispectral remote sensing data using a back-propagation neural network [J]. IEEE Trans on Geoscience and Remote Sensing, 1992, 30(1): 81-88
    • (1992) , vol.30 , Issue.1 , pp. 81-88
    • Heermann, P.1    Khazenie, N.2
  • 7
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • Pal M, Mather P M. An assessment of the effectiveness of decision tree methods for land cover classification [J]. Remote Sensing of Environment, 2003, 86(4): 1145-1161
    • (2003) Remote Sensing of Environment , vol.86 , Issue.4 , pp. 1145-1161
    • Pal, M.1    Mather, P.M.2
  • 8
    • 70549111594 scopus 로고    scopus 로고
    • Support vector machine for multifrequency SAR polarimetric data classification
    • Lardeux C, Frison P, Tison C, et al. Support vector machine for multifrequency SAR polarimetric data classification [J]. IEEE Trans on Geoscience and Remote Sensing, 2009, 47(12): 4143-4152
    • (2009) , vol.47 , Issue.12 , pp. 4143-4152
    • Lardeux, C.1    Frison, P.2    Tison, C.3
  • 9
    • 84868092003 scopus 로고    scopus 로고
    • Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach
    • Niu X, Ban Y F. Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach [J]. Int Journal of Remote Sensing, 2013, 34(1): 1-26
    • (2013) , vol.34 , Issue.1 , pp. 1-26
    • Niu, X.1    Ban, Y.F.2
  • 10
    • 84883156337 scopus 로고    scopus 로고
    • A novel contextual classification algorithm for multitemporal polarimetric SAR data
    • Niu X, Ban Y F. A novel contextual classification algorithm for multitemporal polarimetric SAR data [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3): 681-685
    • (2014) IEEE Geoscience and Remote Sensing Letters , vol.11 , Issue.3 , pp. 681-685
    • Niu, X.1    Ban, Y.F.2
  • 11
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G E, Salakhutdinov R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-507
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 12
    • 85032782045 scopus 로고    scopus 로고
    • Deep learning and its applications to signal and information processing
    • Yu D, Deng L. Deep learning and its applications to signal and information processing [J]. IEEE Signal Processing Magazine, 2011, 28(1): 145-154
    • (2011) IEEE Signal Processing Magazine , vol.28 , Issue.1 , pp. 145-154
    • Yu, D.1    Deng, L.2
  • 15
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828
    • (2013) , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 16
    • 85015872485 scopus 로고    scopus 로고
    • Deep learning comes of age
    • Anthes G. Deep learning comes of age [J]. Communications of the ACM, 2013, 56(6): 13-15
    • (2013) Communications of the ACM , vol.56 , Issue.6 , pp. 13-15
    • Anthes, G.1
  • 17
    • 84892142922 scopus 로고    scopus 로고
    • The learning machines
    • Jones N. The learning machines [J]. Nature, 2014, 505(7482): 146-148
    • (2014) Nature , vol.505 , Issue.7482 , pp. 146-148
    • Jones, N.1
  • 18
    • 84908017576 scopus 로고    scopus 로고
    • Deep learning: New hotspot in machine learning
    • in Chinese
    • Hu Xiaolin, Zhu Jun. Deep learning: New hotspot in machine learning [J]. Communications of the CCF, 2013, 9(7): 64-69 (in Chinese)
    • (2013) Communications of the CCF , vol.9 , Issue.7 , pp. 64-69
    • Hu, X.1    Zhu, J.2
  • 19
    • 84885069866 scopus 로고    scopus 로고
    • Deep learning: Yesterday, today, and tomorrow
    • in Chinese
    • Yu Kai, Jia Lei, Chen Yuqiang, et al. Deep learning: Yesterday, today, and tomorrow [J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804 (in Chinese)
    • (2013) Journal of Computer Research and Development , vol.50 , Issue.9 , pp. 1799-1804
    • Yu, K.1    Jia, L.2    Chen, Y.3
  • 20
    • 78149333575 scopus 로고    scopus 로고
    • Learning to detect roads in high resolution aerial images
    • Piscataway, NJ: IEEE
    • Mnih V, Hinton G E. Learning to detect roads in high resolution aerial images [C] //Proc of 2010 European Conf Computer Vision (ECCV2010). Piscataway, NJ: IEEE, 2010: 210-223
    • (2010) , pp. 210-223
    • Mnih, V.1    Hinton, G.E.2
  • 21
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G E, Osindero S, Teh Y. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 22
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton G E. Training products of experts by minimizing contrastive divergence [J]. Neural Computation, 2002, 14(8): 1771-1800
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 24
    • 78650474133 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines, UTML TR 2010-003
    • Toronto: Department of Computer Science, University of Toronto
    • Hinton G E. A practical guide to training restricted Boltzmann machines, UTML TR 2010-003 [R]. Toronto: Department of Computer Science, University of Toronto, 2010
    • (2010)
    • Hinton, G.E.1
  • 25
    • 45749110924 scopus 로고    scopus 로고
    • Representational power of restricted Boltzmann machines and deep belief networks
    • Roux N, Bengio Y. Representational power of restricted Boltzmann machines and deep belief networks [J]. Neural Computation, 2008, 20(7): 1631-1649
    • (2008) Neural Computation , vol.20 , Issue.7 , pp. 1631-1649
    • Roux, N.1    Bengio, Y.2
  • 27
    • 84865560594 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Lin C J. LIBSVM: A library for support vector machines [OL]. [2013-11-12]. http://www.csie.ntu.edu.tw/~cjlin/libsvm/
    • (2013)
    • Lin, C.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.