메뉴 건너뛰기




Volumn 92, Issue , 2017, Pages 89-97

A Hypergraph and Arithmetic Residue-based Probabilistic Neural Network for classification in Intrusion Detection Systems

Author keywords

Arithmetic Residue (AR); Artificial Neural Network (ANN); Feature selection and classification; Hypergraph (HG); Intrusion Detection Systems (IDSs); Probabilistic Neural Network (PNN)

Indexed keywords

COMPUTER CRIME; DEEP NEURAL NETWORKS; MERCURY (METAL); NETWORK SECURITY; NEURAL NETWORKS;

EID: 85015887826     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2017.01.012     Document Type: Article
Times cited : (84)

References (40)
  • 1
    • 69449101508 scopus 로고    scopus 로고
    • A probabilistic neural network for earthquake magnitude prediction
    • Adeli, H., Panakkat, A., A probabilistic neural network for earthquake magnitude prediction. Neural Networks 22:1 (2009), 1018–1024.
    • (2009) Neural Networks , vol.22 , Issue.1 , pp. 1018-1024
    • Adeli, H.1    Panakkat, A.2
  • 4
    • 53049099150 scopus 로고    scopus 로고
    • Critical study of neural networks in detecting intrusions
    • Beghdad, R., Critical study of neural networks in detecting intrusions. Computers & Security 27:5 (2008), 168–175.
    • (2008) Computers & Security , vol.27 , Issue.5 , pp. 168-175
    • Beghdad, R.1
  • 5
    • 33744747100 scopus 로고
    • Graphs and hypergraphs, Vol. 7
    • North-Holland publishing company Amsterdam
    • Berge, C., Graphs and hypergraphs, Vol. 7. 1973, North-Holland publishing company, Amsterdam.
    • (1973)
    • Berge, C.1
  • 7
    • 0000231655 scopus 로고    scopus 로고
    • In National information systems security conference, October (pp. ).
    • Cannady, J. (1998). Artificial neural networks for misuse detection. In National information systems security conference, October (pp. 368–81).
    • (1998) Artificial neural networks for misuse detection. , pp. 368-81
    • Cannady, J.1
  • 8
    • 26444488624 scopus 로고    scopus 로고
    • Network-based anomaly detection using an elman network
    • Springer Berlin, Heidelberg
    • Cheng, E., Jin, H., Han, Z., Sun, J., Network-based anomaly detection using an elman network. Networking and mobile computing, 2005, Springer Berlin, Heidelberg, 471–480.
    • (2005) Networking and mobile computing , pp. 471-480
    • Cheng, E.1    Jin, H.2    Han, Z.3    Sun, J.4
  • 10
    • 70350122229 scopus 로고    scopus 로고
    • Profile-based adaptive anomaly detection for network security. Sandia National Laboratories Technical Report, SAND2005–7293
    • Durgin, N.A., Zhang, P., Profile-based adaptive anomaly detection for network security. Sandia National Laboratories Technical Report, SAND2005–7293., 2005.
    • (2005)
    • Durgin, N.A.1    Zhang, P.2
  • 11
    • 67649946286 scopus 로고    scopus 로고
    • Bayesian data analysis, Vol. 2
    • Chapman & Hall/CRC Boca Raton, FL, USA
    • Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., Bayesian data analysis, Vol. 2. 2014, Chapman & Hall/CRC, Boca Raton, FL, USA.
    • (2014)
    • Gelman, A.1    Carlin, J.B.2    Stern, H.S.3    Rubin, D.B.4
  • 12
    • 58149263390 scopus 로고    scopus 로고
    • A PSO-based approach to rule learning in network intrusion detection
    • Springer Berlin, Heidelberg
    • Guolong, C., Qingliang, C., Wenzhong, G., A PSO-based approach to rule learning in network intrusion detection. Fuzzy information and engineering, 2007, Springer Berlin, Heidelberg, 666–673.
    • (2007) Fuzzy information and engineering , pp. 666-673
    • Guolong, C.1    Qingliang, C.2    Wenzhong, G.3
  • 16
    • 77955303956 scopus 로고    scopus 로고
    • Root mean square filter for noisy images based on hyper graph model
    • Kannan, K., Kanna, B.R., Aravindan, C., Root mean square filter for noisy images based on hyper graph model. Image and Vision Computing 28:9 (2010), 1329–1338.
    • (2010) Image and Vision Computing , vol.28 , Issue.9 , pp. 1329-1338
    • Kannan, K.1    Kanna, B.R.2    Aravindan, C.3
  • 18
    • 85020632697 scopus 로고    scopus 로고
    • KDD Cup 99 Data set (), Available online at:. (n.d.).
    • KDD Cup 99 Data set (1999), Available online at: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. (n.d.).
    • (1999)
  • 21
    • 84933183260 scopus 로고    scopus 로고
    • CANN: An intrusion detection system based on combining cluster centers and nearest neighbors
    • Lin, W.C., Ke, S.W., Tsai, C.F., CANN: An intrusion detection system based on combining cluster centers and nearest neighbors. Knowledge-Based Systems 78 (2015), 13–21.
    • (2015) Knowledge-Based Systems , vol.78 , pp. 13-21
    • Lin, W.C.1    Ke, S.W.2    Tsai, C.F.3
  • 23
    • 0036804085 scopus 로고    scopus 로고
    • Network intrusion and fault detection: a statistical anomaly approach
    • Manikopoulos, C., Papavassiliou, S., Network intrusion and fault detection: a statistical anomaly approach. IEEE Communications Magazine 40:10 (2002), 76–82.
    • (2002) IEEE Communications Magazine , vol.40 , Issue.10 , pp. 76-82
    • Manikopoulos, C.1    Papavassiliou, S.2
  • 24
    • 85020653378 scopus 로고    scopus 로고
    • Neural networks with categorical valued inputs and applications to intrusion detection
    • University of Missouri/Rolla
    • Novokhodko, A., Neural networks with categorical valued inputs and applications to intrusion detection. 2004, University of Missouri/Rolla.
    • (2004)
    • Novokhodko, A.1
  • 25
    • 84994275509 scopus 로고    scopus 로고
    • Rough set-hypergraph-based feature selection approach for intrusion detection systems
    • Raman, M.G., Kannan, K., Pal, S.K., Sriram, V.S., Rough set-hypergraph-based feature selection approach for intrusion detection systems. Defence Science Journal, 66(6), 2016, 612.
    • (2016) Defence Science Journal , vol.66 , Issue.6 , pp. 612
    • Raman, M.G.1    Kannan, K.2    Pal, S.K.3    Sriram, V.S.4
  • 26
    • 85012897941 scopus 로고    scopus 로고
    • Development of rough set—hypergraph technique for key feature identification in intrusion detection systems
    • Raman, M.G., Kirthivasan, K., Sriram, V.S., Development of rough set—hypergraph technique for key feature identification in intrusion detection systems. Computers & Electrical Engineering, 2017.
    • (2017) Computers & Electrical Engineering
    • Raman, M.G.1    Kirthivasan, K.2    Sriram, V.S.3
  • 29
    • 42449117164 scopus 로고    scopus 로고
    • Guide to intrusion detection and prevention systems (idps), Vol. 800
    • NIST Special Publication
    • Scarfone, K., Mell, P., Guide to intrusion detection and prevention systems (idps), Vol. 800. 2007, NIST Special Publication, 94.
    • (2007) , pp. 94
    • Scarfone, K.1    Mell, P.2
  • 30
    • 67349109383 scopus 로고    scopus 로고
    • A novel feature selection technique for number classification problem using PNN—A plausible scheme for boiler flue gas analysis
    • Sivakumar, A., Kannan, K., A novel feature selection technique for number classification problem using PNN—A plausible scheme for boiler flue gas analysis. Sensors and Actuators B (Chemical) 139:2 (2009), 280–286.
    • (2009) Sensors and Actuators B (Chemical) , vol.139 , Issue.2 , pp. 280-286
    • Sivakumar, A.1    Kannan, K.2
  • 31
    • 84988841912 scopus 로고    scopus 로고
    • A computational model for ranking cloud service providers using hypergraph based techniques
    • Somu, N., Kirthivasan, K., Vs, S.S., A computational model for ranking cloud service providers using hypergraph based techniques. Future Generation Computer Systems 68 (2017), 14–30.
    • (2017) Future Generation Computer Systems , vol.68 , pp. 14-30
    • Somu, N.1    Kirthivasan, K.2    Vs, S.S.3
  • 32
  • 34
    • 0025399335 scopus 로고
    • Probabilistic neural networks and the polynomial adaline as complementary techniques for classification
    • Specht, D.F., Probabilistic neural networks and the polynomial adaline as complementary techniques for classification. IEEE Transactions on Neural Networks 1:1 (1990), 111–121.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 111-121
    • Specht, D.F.1
  • 36
    • 0004004577 scopus 로고
    • Advanced methods in neural computing
    • John Wiley & Sons, Inc.
    • Wasserman, P.D., Advanced methods in neural computing. 1993, John Wiley & Sons, Inc.
    • (1993)
    • Wasserman, P.D.1
  • 37
    • 85009962818 scopus 로고    scopus 로고
    • Data Mining: Practical machine learning tools and techniques
    • Morgan Kaufmann
    • Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., Data Mining: Practical machine learning tools and techniques. 2016, Morgan Kaufmann.
    • (2016)
    • Witten, I.H.1    Frank, E.2    Hall, M.A.3    Pal, C.J.4
  • 38
    • 70350134739 scopus 로고    scopus 로고
    • The use of computational intelligence in intrusion detection systems: A review
    • Wu, S.X., Banzhaf, W., The use of computational intelligence in intrusion detection systems: A review. Applied Soft Computing 10:1 (2010), 1–35.
    • (2010) Applied Soft Computing , vol.10 , Issue.1 , pp. 1-35
    • Wu, S.X.1    Banzhaf, W.2
  • 39
    • 58349096877 scopus 로고    scopus 로고
    • Data mining-based intrusion detectors
    • Wu, S.Y., Yen, E., Data mining-based intrusion detectors. Expert Systems with Applications 36:3 (2009), 5605–5612.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 5605-5612
    • Wu, S.Y.1    Yen, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.