-
1
-
-
84883204011
-
Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification
-
Uzer, M.S., Yilmaz, N., and Inan, O., Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification. Sci. World J. 2013:1–10, 2013. doi:10.1155/2013/419187.
-
(2013)
Sci. World J.
, vol.2013
, pp. 1-10
-
-
Uzer, M.S.1
Yilmaz, N.2
Inan, O.3
-
3
-
-
76649129353
-
Optimizing feature selection to improve medical diagnosis
-
Fan, Y.J., and Chaovalitwongse, W.A., Optimizing feature selection to improve medical diagnosis. Ann. Oper. Res. 174:169–183, 2010. doi:10.1007/s10479–008-0506-z.
-
(2010)
Ann. Oper. Res.
, vol.174
, pp. 169-183
-
-
Fan, Y.J.1
Chaovalitwongse, W.A.2
-
4
-
-
57949111668
-
-
Springer science & business media, New York
-
Pardalos, P.M., Boginski, V.L., and Alkis, V., Data mining in biomedicine. Springer science & business media: New York, 2008.
-
(2008)
Data mining in biomedicine
-
-
Pardalos, P.M.1
Boginski, V.L.2
Alkis, V.3
-
5
-
-
33748186432
-
Logical analysis of data—an overview: from combinatorial optimization to medical applications
-
Hammer, P.L., and Bonates, T.O., Logical analysis of data—an overview: from combinatorial optimization to medical applications. Ann. Oper. Res. 148:203–225, 2006. doi:10.1007/s10479–006-0075-y.
-
(2006)
Ann. Oper. Res.
, vol.148
, pp. 203-225
-
-
Hammer, P.L.1
Bonates, T.O.2
-
7
-
-
10844259824
-
Classification of medical data with a robust multi-level combination scheme
-
Tsirogiannis, G.L., Frossyniotis, D., Stoitsis, J., Golemati, S., Stafylopatis, A., and Nikita, K.S., Classification of medical data with a robust multi-level combination scheme. IEEE International Joint Conference on Neural Networks. 3:2483–2487, 2004. doi:10.1109/IJCNN.2004.1381020.
-
(2004)
IEEE International Joint Conference on Neural Networks
, vol.3
, pp. 2483-2487
-
-
Tsirogiannis, G.L.1
Frossyniotis, D.2
Stoitsis, J.3
Golemati, S.4
Stafylopatis, A.5
Nikita, K.S.6
-
8
-
-
77957593466
-
Neural network classifier with entropy based feature selection on breast cancer diagnosis
-
PID: 20703622
-
Huang, M.L., Hung, Y.H., and Chen, W.Y., Neural network classifier with entropy based feature selection on breast cancer diagnosis. J. Med. Syst. 34:865–873, 2010. doi:10.1007/s10916–009-9301-x.
-
(2010)
J. Med. Syst.
, vol.34
, pp. 865-873
-
-
Huang, M.L.1
Hung, Y.H.2
Chen, W.Y.3
-
9
-
-
0142009655
-
Knowledge discovery in medical and biological datasets using a hybrid Bayes classifier/evolutionary algorithm
-
COI: 1:STN:280:DC%2BD1c%2FotFalsg%3D%3D
-
Raymer, M.L., Doom, T.E., Kuhn, L.A., and Punch, W.F., Knowledge discovery in medical and biological datasets using a hybrid Bayes classifier/evolutionary algorithm. IEEE Trans. Syst. Man Cybern. 33:802–813, 2003. doi:10.1109/TSMCB.2003.816922.
-
(2003)
IEEE Trans. Syst. Man Cybern.
, vol.33
, pp. 802-813
-
-
Raymer, M.L.1
Doom, T.E.2
Kuhn, L.A.3
Punch, W.F.4
-
10
-
-
0013326060
-
Feature selection for classification
-
Dash, M., and Liu, H., Feature selection for classification. Intelligent Data Analysis. 1:131–156, 1997.
-
(1997)
Intelligent Data Analysis
, vol.1
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
11
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum, A.L., and Langley, P., Selection of relevant features and examples in machine learning. Artif. Intell. 97:245–271, 1997.
-
(1997)
Artif. Intell.
, vol.97
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
12
-
-
33748310609
-
Rule learning: ordinal prediction based on rough sets and soft-computing
-
Pattaraintakorn, P., Cercone, N., and Naruedomkul, K., Rule learning: ordinal prediction based on rough sets and soft-computing. Appl. Math. Lett. 19:1300–1307, 2006. doi:10.1016/j.aml.2005.08.004.
-
(2006)
Appl. Math. Lett.
, vol.19
, pp. 1300-1307
-
-
Pattaraintakorn, P.1
Cercone, N.2
Naruedomkul, K.3
-
13
-
-
84940885134
-
Sparse proximal support vector machines for feature selection in high dimensional datasets
-
Pappu, V., Panagopoulos, O.P., Xanthopoulos, P., and Pardalos, P.M., Sparse proximal support vector machines for feature selection in high dimensional datasets. Expert Systems with Applications. 42:9183–9191, 2015.
-
(2015)
Expert Systems with Applications
, vol.42
, pp. 9183-9191
-
-
Pappu, V.1
Panagopoulos, O.P.2
Xanthopoulos, P.3
Pardalos, P.M.4
-
14
-
-
34547975736
-
-
Learn
-
Cao, B., Shen, D., Sun, J.T., Yang, Q., and Chen, Z., Feature selection in a kernel space. Proceedings of the 24th international conference on. Mach. Learn. 121–128, 2007. doi:10.1145/1273496.1273512.
-
(2007)
Cao, B., Shen, D., Sun, J.T., Yang, Q., and Chen, Z., Feature selection in a kernel space. Proceedings of the 24th international conference on. Mach
, vol.121-128
-
-
-
15
-
-
84956678371
-
Cost-sensitive feature selection using random forest: selecting low-cost subsets of informative features
-
Zhou, Q., Zhou, H., and Li, T., Cost-sensitive feature selection using random forest: selecting low-cost subsets of informative features. Knowl.-Based Syst. 95:1–11, 2015. doi:10.1016/j.knosys.2015.11.010.
-
(2015)
Knowl.-Based Syst.
, vol.95
, pp. 1-11
-
-
Zhou, Q.1
Zhou, H.2
Li, T.3
-
16
-
-
28844472970
-
Efficient feature selection based on independent component analysis. Intelligent Sensors
-
Prasad M, Sowmya A, Koch I (2004) Efficient feature selection based on independent component analysis. Intelligent Sensors, Sensor Networks and Information Processing Conference. 427–432. doi:10.1109/ISSNIP.2004.1417499
-
(2004)
Sensor Networks and Information Processing Conference
, pp. 427-432
-
-
Prasad, M.1
Sowmya, A.2
Koch, I.3
-
17
-
-
84905560564
-
An intelligent system for lung cancer diagnosis using a new genetic algorithm based feature selection method
-
COI: 1:CAS:528:DC%2BC2cXjs1ygt7w%3D
-
Lu, C., Zhu, Z., and Gu, X., An intelligent system for lung cancer diagnosis using a new genetic algorithm based feature selection method. J. Med. Syst. 38:1–9, 2014. doi:10.1007/s10916–014-0097-y.
-
(2014)
J. Med. Syst.
, vol.38
, pp. 1-9
-
-
Lu, C.1
Zhu, Z.2
Gu, X.3
-
18
-
-
84863201190
-
A robust multi-class feature selection strategy based on rotation forest ensemble algorithm for diagnosis of erythemato-squamous diseases
-
PID: 20703639
-
Ozcift, A., and Gulten, A., A robust multi-class feature selection strategy based on rotation forest ensemble algorithm for diagnosis of erythemato-squamous diseases. J. Med. Syst. 36:941–949, 2012. doi:10.1007/s10916–010–9558-0.
-
(2012)
J. Med. Syst.
, vol.36
, pp. 941-949
-
-
Ozcift, A.1
Gulten, A.2
-
19
-
-
84985996957
-
Feature selection and classification methodology for the detection of knee-joint disorders
-
Nalband, S., Sundar, A., Prince, A.A., and Agarwal, A., Feature selection and classification methodology for the detection of knee-joint disorders. Comput. Methods Prog. Biomed. 127:94–104, 2016. doi:10.1016/j.cmpb.2016.01.020.
-
(2016)
Comput. Methods Prog. Biomed.
, vol.127
, pp. 94-104
-
-
Nalband, S.1
Sundar, A.2
Prince, A.A.3
Agarwal, A.4
-
20
-
-
84873030140
-
Enhanced cancer recognition system based on random forests feature elimination algorithm
-
PID: 21567124
-
Ozcift, A., Enhanced cancer recognition system based on random forests feature elimination algorithm. J. Med. Syst. 36:2577–2585, 2012. doi:10.1007/s10916–011–9730-1.
-
(2012)
J. Med. Syst.
, vol.36
, pp. 2577-2585
-
-
Ozcift, A.1
-
21
-
-
84941944487
-
A novel hybrid feature selection method based on rough set and improved harmony search
-
Hannah, I.H., Bagyamathi, M., and Azar, A.T., A novel hybrid feature selection method based on rough set and improved harmony search. Neural Comput. & Applic. 26:1859–1880, 2015. doi:10.1007/s00521–015–1840-0.
-
(2015)
Neural Comput. & Applic.
, vol.26
, pp. 1859-1880
-
-
Hannah, I.H.1
Bagyamathi, M.2
Azar, A.T.3
-
22
-
-
84887826239
-
Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis
-
Hannah, I.H., Azar, A.T., and Jothi, G., Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Comput. Methods Prog. Biomed. 113(1):175–185, 2014. doi:10.1016/j.cmpb.2013.10.007.
-
(2014)
Comput. Methods Prog. Biomed.
, vol.113
, Issue.1
, pp. 175-185
-
-
Hannah, I.H.1
Azar, A.T.2
Jothi, G.3
-
23
-
-
68949155378
-
Feature subset selection in large dimensionality domains
-
Gheyas, I.A., and Smith, L.S., Feature subset selection in large dimensionality domains. Pattern Recogn. 43:5–13, 2010. doi:10.1016/j.patcog.2009.06.009.
-
(2010)
Pattern Recogn.
, vol.43
, pp. 5-13
-
-
Gheyas, I.A.1
Smith, L.S.2
-
24
-
-
0036522403
-
Unsupervised feature selection using feature similarity
-
Mitra, P., Murthy, C.A., and Pal, S.K., Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24:301–312, 2002. doi:10.1109/34.990133.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, pp. 301-312
-
-
Mitra, P.1
Murthy, C.A.2
Pal, S.K.3
-
25
-
-
84894903349
-
A survey on feature selection methods
-
Chandrashekar, G., and Ferat, S., A survey on feature selection methods. Comput. Electr. Eng. 40:16–28, 2014. doi:10.1016/j.compeleceng.2013.11.024.
-
(2014)
Comput. Electr. Eng.
, vol.40
, pp. 16-28
-
-
Chandrashekar, G.1
Ferat, S.2
-
28
-
-
84876731442
-
Designing of on line intrusion detection system using rough set theory and Q-learning algorithm
-
Sengupta, N., Sen, J., Sil, J., and Saha, M., Designing of on line intrusion detection system using rough set theory and Q-learning algorithm. Neurocomputing. 111:161–168, 2013. doi:10.1016/j.neucom.2012.12.023.
-
(2013)
Neurocomputing
, vol.111
, pp. 161-168
-
-
Sengupta, N.1
Sen, J.2
Sil, J.3
Saha, M.4
-
29
-
-
0037332841
-
Rough set methods in feature selection and recognition
-
Swiniarski, R.W., and Skowron, A., Rough set methods in feature selection and recognition. Pattern Recogn. Lett. 24:833–849, 2003. doi:10.1016/S0167–8655(02)00196–4.
-
(2003)
Pattern Recogn. Lett.
, vol.24
, pp. 833-849
-
-
Swiniarski, R.W.1
Skowron, A.2
-
30
-
-
44649093299
-
Ramanna S (2008) Feature selection: Near set approach
-
Springer, Berlin Heidelberg
-
Peters J F, Ramanna S (2008) Feature selection: Near set approach. In: Mining complex data. Springer: Berlin Heidelberg, pp 57–71.
-
Mining complex data
, pp. 57-71
-
-
Peters, J.F.1
-
31
-
-
33947421283
-
Fuzzy-rough sets assisted attribute selection
-
Jensen, R., and Shen, Q., Fuzzy-rough sets assisted attribute selection. IEEE Trans. Fuzzy Syst. 15:73–89, 2007. doi:10.1109/TFUZZ.2006.889761.
-
(2007)
IEEE Trans. Fuzzy Syst.
, vol.15
, pp. 73-89
-
-
Jensen, R.1
Shen, Q.2
-
32
-
-
84866356581
-
Hypergraph based information-theoretic feature selection
-
Zhang, Z., and Hancock, E.R., Hypergraph based information-theoretic feature selection. Pattern Recogn. Lett. 33:1991–1999, 2012. doi:10.1016/j.patrec.2012.03.021.
-
(2012)
Pattern Recogn. Lett.
, vol.33
, pp. 1991-1999
-
-
Zhang, Z.1
Hancock, E.R.2
-
33
-
-
84988707755
-
An attribute-oriented rough set approach for knowledge discovery in databases. In: Rough sets, fuzzy sets and knowledge discovery. Springer
-
Hu X, Cercone N, Han J (1994) An attribute-oriented rough set approach for knowledge discovery in databases. In: Rough sets, fuzzy sets and knowledge discovery. Springer, pp 90–99.
-
(1994)
pp 90–99
-
-
Hu, X.1
Cercone, N.2
Han, J.3
-
34
-
-
0037692973
-
Feature ranking in rough sets
-
Hu, K., Lu, Y., and Shi, C., Feature ranking in rough sets. AI Commun. 16:41–50, 2003.
-
(2003)
AI Commun.
, vol.16
, pp. 41-50
-
-
Hu, K.1
Lu, Y.2
Shi, C.3
-
35
-
-
58249084603
-
Exploring the boundary region of tolerance rough sets for feature selection
-
Mac Parthaláin, N., and Shen, Q., Exploring the boundary region of tolerance rough sets for feature selection. Pattern Recogn. 42:655–667, 2009. doi:10.1016/j.patcog.2008.08.029.
-
(2009)
Pattern Recogn.
, vol.42
, pp. 655-667
-
-
Mac Parthaláin, N.1
Shen, Q.2
-
36
-
-
0036948613
-
Approximate entropy reducts
-
Slezak, D., Approximate entropy reducts. Fundamenta informaticae. 53:365–390, 2002.
-
(2002)
Fundamenta informaticae
, vol.53
, pp. 365-390
-
-
Slezak, D.1
-
37
-
-
33646365623
-
Quick attribute reduction algorithm with complexity of max(O (| C|| U|), O (| C|(2)| U/C|))
-
Yan, X.Z., Zuopeng, L., and Ru, W.S., Quick attribute reduction algorithm with complexity of max(O (| C|| U|), O (| C|(2)| U/C|)). Comput. J. 29:391–399, 2006. doi:10.3321/j.issn:0254–4164.2006.03.006.
-
(2006)
Comput. J.
, vol.29
, pp. 391-399
-
-
Yan, X.Z.1
Zuopeng, L.2
Ru, W.S.3
-
38
-
-
84919327055
-
A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems
-
Eesa, A.S., Orman, Z., and Brifcani, A.M.A., A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems. Expert Systems with Applications. 42:2670–2679, 2015. doi:10.1016/j.eswa.2014.11.009.
-
(2015)
Expert Systems with Applications
, vol.42
, pp. 2670-2679
-
-
Eesa, A.S.1
Orman, Z.2
Brifcani, A.M.A.3
-
40
-
-
77952390959
-
Improving effectiveness of intrusion detection by correlation feature selection. ARES’10 International Conference on Availability
-
Nguyen H, Franke K, Petrović S (2010) Improving effectiveness of intrusion detection by correlation feature selection. ARES’10 International Conference on Availability, Reliability, and Security. 17–24. doi:10.1109/ARES.2010.70
-
(2010)
Reliability, and Security
, pp. 17-24
-
-
Nguyen, H.1
Franke, K.2
Petrović, S.3
-
41
-
-
0034430724
-
H (200) Finding minimal reduct with binary integer programming in data mining
-
Bakar, A.A., Sulaiman, M.N., Othman, M., and Selamat, M., H (200) Finding minimal reduct with binary integer programming in data mining. Proceedings TENCON. 3:141–146, 2000. doi:10.1109/TENCON.2000.892239.
-
(2000)
Proceedings TENCON
, vol.3
, pp. 141-146
-
-
Bakar, A.A.1
Sulaiman, M.N.2
Othman, M.3
Selamat, M.4
-
42
-
-
33845523839
-
Feature selection based on rough sets and particle swarm optimization
-
COI: 1:CAS:528:DC%2BD1cXhtFOmu78%3D
-
Wang, X., Yang, J., Teng, X., Xia, W., and Jensen, R., Feature selection based on rough sets and particle swarm optimization. Pattern Recogn. Lett. 28:459–471, 2007. doi:10.1016/j.patrec.2006.09.003.
-
(2007)
Pattern Recogn. Lett.
, vol.28
, pp. 459-471
-
-
Wang, X.1
Yang, J.2
Teng, X.3
Xia, W.4
Jensen, R.5
-
43
-
-
84925585448
-
A relative decision entropy-based feature selection approach
-
Jiang, F., Sui, Y., and Zhou, L., A relative decision entropy-based feature selection approach. Pattern Recogn. 48:2151–2163, 2015. doi:10.1016/j.patcog.2015.01.023.
-
(2015)
Pattern Recogn.
, vol.48
, pp. 2151-2163
-
-
Jiang, F.1
Sui, Y.2
Zhou, L.3
-
44
-
-
84941944487
-
A novel hybrid feature selection method based on rough set and improved harmony search
-
Inbarani, H.H., Bagyamathi, M., and Azar, A.T., A novel hybrid feature selection method based on rough set and improved harmony search. Neural Comput. & Applic. 26:1859–1880, 2015. doi:10.1007/s00521–015–1840-0.
-
(2015)
Neural Comput. & Applic.
, vol.26
, pp. 1859-1880
-
-
Inbarani, H.H.1
Bagyamathi, M.2
Azar, A.T.3
-
48
-
-
77955325996
-
-
Springer Verlag, Berlin Heidelberg
-
Abraham, A., Falc, R., and Bello, R., Rough set theory: a true landmark in data analysis. Springer Verlag: Berlin Heidelberg, 2009.
-
(2009)
Rough set theory: a true landmark in data analysis
-
-
Abraham, A.1
Falc, R.2
Bello, R.3
-
50
-
-
0004249508
-
-
North-Holland publishing company, Amsterdam
-
Berge, C., Graphs and hypergraphs. North-Holland publishing company, Amsterdam, 1973.
-
(1973)
Graphs and hypergraphs
-
-
Berge, C.1
-
51
-
-
77955303956
-
Root mean square filter for noisy images based on hyper graph model
-
Kannan, K., Kanna, B.R., and Aravindan, C., Root mean square filter for noisy images based on hyper graph model. Image Vis. Comput. 28:1329–1338, 2010. doi:10.1016/j.imavis.2010.01.013.
-
(2010)
Image Vis. Comput.
, vol.28
, pp. 1329-1338
-
-
Kannan, K.1
Kanna, B.R.2
Aravindan, C.3
-
52
-
-
24644442323
-
Gillibert L (2005) Hypergraph-based image representation
-
Springer, Berlin Heidelberg
-
Bretto A, Gillibert L (2005) Hypergraph-based image representation. In: Graph-based representations in pattern recognition. Springer: Berlin Heidelberg, pp 1–11
-
Graph-based representations in pattern recognition
, pp. 1-11
-
-
Bretto, A.1
-
53
-
-
0035294770
-
Aboutajdine D (2002) Hypergraph imaging: an overview
-
Bretto, A., and Cherifi, H., Aboutajdine D (2002) Hypergraph imaging: an overview. Pattern Recogn. 35:651–658, 2002. doi:10.1016/S0031–3203(01)00067-X.
-
(2002)
Pattern Recogn.
, vol.35
, pp. 651-658
-
-
Bretto, A.1
Cherifi, H.2
-
54
-
-
84988713972
-
Improving fuzzy-rough quick reduct for feature selection. 19th Iranian conference on electrical engineering
-
Anaraki, J.R., Eftekhari M (2011) Improving fuzzy-rough quick reduct for feature selection. 19th Iranian conference on electrical engineering. 1–6
-
(2011)
1–6
-
-
Anaraki, J.R.1
Eftekhari, M.2
-
55
-
-
84988713971
-
-
UCI Repository (2016),. Accessed 22 Jun 2016.
-
UCI Repository (2016), http://archive.ics.uci.edu/ml/. Accessed 22 Jun 2016.
-
-
-
-
57
-
-
0036662454
-
Decision table reduction based on conditional information entropy
-
Wang, G.Y., Yu, H., and Yang, D.C., Decision table reduction based on conditional information entropy. Chinese journal of computers - chinese edition. 25:759–766, 2002.
-
(2002)
Chinese journal of computers - chinese edition
, vol.25
, pp. 759-766
-
-
Wang, G.Y.1
Yu, H.2
Yang, D.C.3
|