메뉴 건너뛰기




Volumn 40, Issue 11, 2016, Pages

Hypergraph Based Feature Selection Technique for Medical Diagnosis

Author keywords

Feature selection; High dimensional datasets; Hypergraph; K Helly property; Medical diagnosis; Rough set theory (RST)

Indexed keywords

CLASSIFICATION; DIAGNOSIS; INSTRUMENT VALIDATION; ROUGH SET; THEORETICAL MODEL; ARTIFICIAL INTELLIGENCE; CLINICAL DECISION SUPPORT SYSTEM; DATA MINING; HUMAN; MACHINE LEARNING; ORGANIZATION AND MANAGEMENT; PROCEDURES;

EID: 84988688678     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-016-0600-8     Document Type: Article
Times cited : (37)

References (57)
  • 1
    • 84883204011 scopus 로고    scopus 로고
    • Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification
    • Uzer, M.S., Yilmaz, N., and Inan, O., Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification. Sci. World J. 2013:1–10, 2013. doi:10.1155/2013/419187.
    • (2013) Sci. World J. , vol.2013 , pp. 1-10
    • Uzer, M.S.1    Yilmaz, N.2    Inan, O.3
  • 3
    • 76649129353 scopus 로고    scopus 로고
    • Optimizing feature selection to improve medical diagnosis
    • Fan, Y.J., and Chaovalitwongse, W.A., Optimizing feature selection to improve medical diagnosis. Ann. Oper. Res. 174:169–183, 2010. doi:10.1007/s10479–008-0506-z.
    • (2010) Ann. Oper. Res. , vol.174 , pp. 169-183
    • Fan, Y.J.1    Chaovalitwongse, W.A.2
  • 5
    • 33748186432 scopus 로고    scopus 로고
    • Logical analysis of data—an overview: from combinatorial optimization to medical applications
    • Hammer, P.L., and Bonates, T.O., Logical analysis of data—an overview: from combinatorial optimization to medical applications. Ann. Oper. Res. 148:203–225, 2006. doi:10.1007/s10479–006-0075-y.
    • (2006) Ann. Oper. Res. , vol.148 , pp. 203-225
    • Hammer, P.L.1    Bonates, T.O.2
  • 8
    • 77957593466 scopus 로고    scopus 로고
    • Neural network classifier with entropy based feature selection on breast cancer diagnosis
    • PID: 20703622
    • Huang, M.L., Hung, Y.H., and Chen, W.Y., Neural network classifier with entropy based feature selection on breast cancer diagnosis. J. Med. Syst. 34:865–873, 2010. doi:10.1007/s10916–009-9301-x.
    • (2010) J. Med. Syst. , vol.34 , pp. 865-873
    • Huang, M.L.1    Hung, Y.H.2    Chen, W.Y.3
  • 9
    • 0142009655 scopus 로고    scopus 로고
    • Knowledge discovery in medical and biological datasets using a hybrid Bayes classifier/evolutionary algorithm
    • COI: 1:STN:280:DC%2BD1c%2FotFalsg%3D%3D
    • Raymer, M.L., Doom, T.E., Kuhn, L.A., and Punch, W.F., Knowledge discovery in medical and biological datasets using a hybrid Bayes classifier/evolutionary algorithm. IEEE Trans. Syst. Man Cybern. 33:802–813, 2003. doi:10.1109/TSMCB.2003.816922.
    • (2003) IEEE Trans. Syst. Man Cybern. , vol.33 , pp. 802-813
    • Raymer, M.L.1    Doom, T.E.2    Kuhn, L.A.3    Punch, W.F.4
  • 10
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash, M., and Liu, H., Feature selection for classification. Intelligent Data Analysis. 1:131–156, 1997.
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 11
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum, A.L., and Langley, P., Selection of relevant features and examples in machine learning. Artif. Intell. 97:245–271, 1997.
    • (1997) Artif. Intell. , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 12
    • 33748310609 scopus 로고    scopus 로고
    • Rule learning: ordinal prediction based on rough sets and soft-computing
    • Pattaraintakorn, P., Cercone, N., and Naruedomkul, K., Rule learning: ordinal prediction based on rough sets and soft-computing. Appl. Math. Lett. 19:1300–1307, 2006. doi:10.1016/j.aml.2005.08.004.
    • (2006) Appl. Math. Lett. , vol.19 , pp. 1300-1307
    • Pattaraintakorn, P.1    Cercone, N.2    Naruedomkul, K.3
  • 13
  • 15
    • 84956678371 scopus 로고    scopus 로고
    • Cost-sensitive feature selection using random forest: selecting low-cost subsets of informative features
    • Zhou, Q., Zhou, H., and Li, T., Cost-sensitive feature selection using random forest: selecting low-cost subsets of informative features. Knowl.-Based Syst. 95:1–11, 2015. doi:10.1016/j.knosys.2015.11.010.
    • (2015) Knowl.-Based Syst. , vol.95 , pp. 1-11
    • Zhou, Q.1    Zhou, H.2    Li, T.3
  • 16
    • 28844472970 scopus 로고    scopus 로고
    • Efficient feature selection based on independent component analysis. Intelligent Sensors
    • Prasad M, Sowmya A, Koch I (2004) Efficient feature selection based on independent component analysis. Intelligent Sensors, Sensor Networks and Information Processing Conference. 427–432. doi:10.1109/ISSNIP.2004.1417499
    • (2004) Sensor Networks and Information Processing Conference , pp. 427-432
    • Prasad, M.1    Sowmya, A.2    Koch, I.3
  • 17
    • 84905560564 scopus 로고    scopus 로고
    • An intelligent system for lung cancer diagnosis using a new genetic algorithm based feature selection method
    • COI: 1:CAS:528:DC%2BC2cXjs1ygt7w%3D
    • Lu, C., Zhu, Z., and Gu, X., An intelligent system for lung cancer diagnosis using a new genetic algorithm based feature selection method. J. Med. Syst. 38:1–9, 2014. doi:10.1007/s10916–014-0097-y.
    • (2014) J. Med. Syst. , vol.38 , pp. 1-9
    • Lu, C.1    Zhu, Z.2    Gu, X.3
  • 18
    • 84863201190 scopus 로고    scopus 로고
    • A robust multi-class feature selection strategy based on rotation forest ensemble algorithm for diagnosis of erythemato-squamous diseases
    • PID: 20703639
    • Ozcift, A., and Gulten, A., A robust multi-class feature selection strategy based on rotation forest ensemble algorithm for diagnosis of erythemato-squamous diseases. J. Med. Syst. 36:941–949, 2012. doi:10.1007/s10916–010–9558-0.
    • (2012) J. Med. Syst. , vol.36 , pp. 941-949
    • Ozcift, A.1    Gulten, A.2
  • 19
    • 84985996957 scopus 로고    scopus 로고
    • Feature selection and classification methodology for the detection of knee-joint disorders
    • Nalband, S., Sundar, A., Prince, A.A., and Agarwal, A., Feature selection and classification methodology for the detection of knee-joint disorders. Comput. Methods Prog. Biomed. 127:94–104, 2016. doi:10.1016/j.cmpb.2016.01.020.
    • (2016) Comput. Methods Prog. Biomed. , vol.127 , pp. 94-104
    • Nalband, S.1    Sundar, A.2    Prince, A.A.3    Agarwal, A.4
  • 20
    • 84873030140 scopus 로고    scopus 로고
    • Enhanced cancer recognition system based on random forests feature elimination algorithm
    • PID: 21567124
    • Ozcift, A., Enhanced cancer recognition system based on random forests feature elimination algorithm. J. Med. Syst. 36:2577–2585, 2012. doi:10.1007/s10916–011–9730-1.
    • (2012) J. Med. Syst. , vol.36 , pp. 2577-2585
    • Ozcift, A.1
  • 21
    • 84941944487 scopus 로고    scopus 로고
    • A novel hybrid feature selection method based on rough set and improved harmony search
    • Hannah, I.H., Bagyamathi, M., and Azar, A.T., A novel hybrid feature selection method based on rough set and improved harmony search. Neural Comput. & Applic. 26:1859–1880, 2015. doi:10.1007/s00521–015–1840-0.
    • (2015) Neural Comput. & Applic. , vol.26 , pp. 1859-1880
    • Hannah, I.H.1    Bagyamathi, M.2    Azar, A.T.3
  • 22
    • 84887826239 scopus 로고    scopus 로고
    • Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis
    • Hannah, I.H., Azar, A.T., and Jothi, G., Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Comput. Methods Prog. Biomed. 113(1):175–185, 2014. doi:10.1016/j.cmpb.2013.10.007.
    • (2014) Comput. Methods Prog. Biomed. , vol.113 , Issue.1 , pp. 175-185
    • Hannah, I.H.1    Azar, A.T.2    Jothi, G.3
  • 23
    • 68949155378 scopus 로고    scopus 로고
    • Feature subset selection in large dimensionality domains
    • Gheyas, I.A., and Smith, L.S., Feature subset selection in large dimensionality domains. Pattern Recogn. 43:5–13, 2010. doi:10.1016/j.patcog.2009.06.009.
    • (2010) Pattern Recogn. , vol.43 , pp. 5-13
    • Gheyas, I.A.1    Smith, L.S.2
  • 24
    • 0036522403 scopus 로고    scopus 로고
    • Unsupervised feature selection using feature similarity
    • Mitra, P., Murthy, C.A., and Pal, S.K., Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24:301–312, 2002. doi:10.1109/34.990133.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 301-312
    • Mitra, P.1    Murthy, C.A.2    Pal, S.K.3
  • 25
    • 84894903349 scopus 로고    scopus 로고
    • A survey on feature selection methods
    • Chandrashekar, G., and Ferat, S., A survey on feature selection methods. Comput. Electr. Eng. 40:16–28, 2014. doi:10.1016/j.compeleceng.2013.11.024.
    • (2014) Comput. Electr. Eng. , vol.40 , pp. 16-28
    • Chandrashekar, G.1    Ferat, S.2
  • 28
    • 84876731442 scopus 로고    scopus 로고
    • Designing of on line intrusion detection system using rough set theory and Q-learning algorithm
    • Sengupta, N., Sen, J., Sil, J., and Saha, M., Designing of on line intrusion detection system using rough set theory and Q-learning algorithm. Neurocomputing. 111:161–168, 2013. doi:10.1016/j.neucom.2012.12.023.
    • (2013) Neurocomputing , vol.111 , pp. 161-168
    • Sengupta, N.1    Sen, J.2    Sil, J.3    Saha, M.4
  • 29
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • Swiniarski, R.W., and Skowron, A., Rough set methods in feature selection and recognition. Pattern Recogn. Lett. 24:833–849, 2003. doi:10.1016/S0167–8655(02)00196–4.
    • (2003) Pattern Recogn. Lett. , vol.24 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 30
    • 44649093299 scopus 로고    scopus 로고
    • Ramanna S (2008) Feature selection: Near set approach
    • Springer, Berlin Heidelberg
    • Peters J F, Ramanna S (2008) Feature selection: Near set approach. In: Mining complex data. Springer: Berlin Heidelberg, pp 57–71.
    • Mining complex data , pp. 57-71
    • Peters, J.F.1
  • 31
    • 33947421283 scopus 로고    scopus 로고
    • Fuzzy-rough sets assisted attribute selection
    • Jensen, R., and Shen, Q., Fuzzy-rough sets assisted attribute selection. IEEE Trans. Fuzzy Syst. 15:73–89, 2007. doi:10.1109/TFUZZ.2006.889761.
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , pp. 73-89
    • Jensen, R.1    Shen, Q.2
  • 32
    • 84866356581 scopus 로고    scopus 로고
    • Hypergraph based information-theoretic feature selection
    • Zhang, Z., and Hancock, E.R., Hypergraph based information-theoretic feature selection. Pattern Recogn. Lett. 33:1991–1999, 2012. doi:10.1016/j.patrec.2012.03.021.
    • (2012) Pattern Recogn. Lett. , vol.33 , pp. 1991-1999
    • Zhang, Z.1    Hancock, E.R.2
  • 33
    • 84988707755 scopus 로고
    • An attribute-oriented rough set approach for knowledge discovery in databases. In: Rough sets, fuzzy sets and knowledge discovery. Springer
    • Hu X, Cercone N, Han J (1994) An attribute-oriented rough set approach for knowledge discovery in databases. In: Rough sets, fuzzy sets and knowledge discovery. Springer, pp 90–99.
    • (1994) pp 90–99
    • Hu, X.1    Cercone, N.2    Han, J.3
  • 34
    • 0037692973 scopus 로고    scopus 로고
    • Feature ranking in rough sets
    • Hu, K., Lu, Y., and Shi, C., Feature ranking in rough sets. AI Commun. 16:41–50, 2003.
    • (2003) AI Commun. , vol.16 , pp. 41-50
    • Hu, K.1    Lu, Y.2    Shi, C.3
  • 35
    • 58249084603 scopus 로고    scopus 로고
    • Exploring the boundary region of tolerance rough sets for feature selection
    • Mac Parthaláin, N., and Shen, Q., Exploring the boundary region of tolerance rough sets for feature selection. Pattern Recogn. 42:655–667, 2009. doi:10.1016/j.patcog.2008.08.029.
    • (2009) Pattern Recogn. , vol.42 , pp. 655-667
    • Mac Parthaláin, N.1    Shen, Q.2
  • 36
    • 0036948613 scopus 로고    scopus 로고
    • Approximate entropy reducts
    • Slezak, D., Approximate entropy reducts. Fundamenta informaticae. 53:365–390, 2002.
    • (2002) Fundamenta informaticae , vol.53 , pp. 365-390
    • Slezak, D.1
  • 37
    • 33646365623 scopus 로고    scopus 로고
    • Quick attribute reduction algorithm with complexity of max(O (| C|| U|), O (| C|(2)| U/C|))
    • Yan, X.Z., Zuopeng, L., and Ru, W.S., Quick attribute reduction algorithm with complexity of max(O (| C|| U|), O (| C|(2)| U/C|)). Comput. J. 29:391–399, 2006. doi:10.3321/j.issn:0254–4164.2006.03.006.
    • (2006) Comput. J. , vol.29 , pp. 391-399
    • Yan, X.Z.1    Zuopeng, L.2    Ru, W.S.3
  • 38
    • 84919327055 scopus 로고    scopus 로고
    • A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems
    • Eesa, A.S., Orman, Z., and Brifcani, A.M.A., A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems. Expert Systems with Applications. 42:2670–2679, 2015. doi:10.1016/j.eswa.2014.11.009.
    • (2015) Expert Systems with Applications , vol.42 , pp. 2670-2679
    • Eesa, A.S.1    Orman, Z.2    Brifcani, A.M.A.3
  • 40
    • 77952390959 scopus 로고    scopus 로고
    • Improving effectiveness of intrusion detection by correlation feature selection. ARES’10 International Conference on Availability
    • Nguyen H, Franke K, Petrović S (2010) Improving effectiveness of intrusion detection by correlation feature selection. ARES’10 International Conference on Availability, Reliability, and Security. 17–24. doi:10.1109/ARES.2010.70
    • (2010) Reliability, and Security , pp. 17-24
    • Nguyen, H.1    Franke, K.2    Petrović, S.3
  • 41
    • 0034430724 scopus 로고    scopus 로고
    • H (200) Finding minimal reduct with binary integer programming in data mining
    • Bakar, A.A., Sulaiman, M.N., Othman, M., and Selamat, M., H (200) Finding minimal reduct with binary integer programming in data mining. Proceedings TENCON. 3:141–146, 2000. doi:10.1109/TENCON.2000.892239.
    • (2000) Proceedings TENCON , vol.3 , pp. 141-146
    • Bakar, A.A.1    Sulaiman, M.N.2    Othman, M.3    Selamat, M.4
  • 42
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • COI: 1:CAS:528:DC%2BD1cXhtFOmu78%3D
    • Wang, X., Yang, J., Teng, X., Xia, W., and Jensen, R., Feature selection based on rough sets and particle swarm optimization. Pattern Recogn. Lett. 28:459–471, 2007. doi:10.1016/j.patrec.2006.09.003.
    • (2007) Pattern Recogn. Lett. , vol.28 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 43
    • 84925585448 scopus 로고    scopus 로고
    • A relative decision entropy-based feature selection approach
    • Jiang, F., Sui, Y., and Zhou, L., A relative decision entropy-based feature selection approach. Pattern Recogn. 48:2151–2163, 2015. doi:10.1016/j.patcog.2015.01.023.
    • (2015) Pattern Recogn. , vol.48 , pp. 2151-2163
    • Jiang, F.1    Sui, Y.2    Zhou, L.3
  • 44
    • 84941944487 scopus 로고    scopus 로고
    • A novel hybrid feature selection method based on rough set and improved harmony search
    • Inbarani, H.H., Bagyamathi, M., and Azar, A.T., A novel hybrid feature selection method based on rough set and improved harmony search. Neural Comput. & Applic. 26:1859–1880, 2015. doi:10.1007/s00521–015–1840-0.
    • (2015) Neural Comput. & Applic. , vol.26 , pp. 1859-1880
    • Inbarani, H.H.1    Bagyamathi, M.2    Azar, A.T.3
  • 50
    • 0004249508 scopus 로고
    • North-Holland publishing company, Amsterdam
    • Berge, C., Graphs and hypergraphs. North-Holland publishing company, Amsterdam, 1973.
    • (1973) Graphs and hypergraphs
    • Berge, C.1
  • 51
    • 77955303956 scopus 로고    scopus 로고
    • Root mean square filter for noisy images based on hyper graph model
    • Kannan, K., Kanna, B.R., and Aravindan, C., Root mean square filter for noisy images based on hyper graph model. Image Vis. Comput. 28:1329–1338, 2010. doi:10.1016/j.imavis.2010.01.013.
    • (2010) Image Vis. Comput. , vol.28 , pp. 1329-1338
    • Kannan, K.1    Kanna, B.R.2    Aravindan, C.3
  • 52
    • 24644442323 scopus 로고    scopus 로고
    • Gillibert L (2005) Hypergraph-based image representation
    • Springer, Berlin Heidelberg
    • Bretto A, Gillibert L (2005) Hypergraph-based image representation. In: Graph-based representations in pattern recognition. Springer: Berlin Heidelberg, pp 1–11
    • Graph-based representations in pattern recognition , pp. 1-11
    • Bretto, A.1
  • 53
    • 0035294770 scopus 로고    scopus 로고
    • Aboutajdine D (2002) Hypergraph imaging: an overview
    • Bretto, A., and Cherifi, H., Aboutajdine D (2002) Hypergraph imaging: an overview. Pattern Recogn. 35:651–658, 2002. doi:10.1016/S0031–3203(01)00067-X.
    • (2002) Pattern Recogn. , vol.35 , pp. 651-658
    • Bretto, A.1    Cherifi, H.2
  • 54
    • 84988713972 scopus 로고    scopus 로고
    • Improving fuzzy-rough quick reduct for feature selection. 19th Iranian conference on electrical engineering
    • Anaraki, J.R., Eftekhari M (2011) Improving fuzzy-rough quick reduct for feature selection. 19th Iranian conference on electrical engineering. 1–6
    • (2011) 1–6
    • Anaraki, J.R.1    Eftekhari, M.2
  • 55
    • 84988713971 scopus 로고    scopus 로고
    • UCI Repository (2016),. Accessed 22 Jun 2016.
    • UCI Repository (2016), http://archive.ics.uci.edu/ml/. Accessed 22 Jun 2016.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.