메뉴 건너뛰기




Volumn 27, Issue 5-6, 2008, Pages 168-175

Critical study of neural networks in detecting intrusions

Author keywords

Attack categories; Intrusion detection systems; KDD features; Misuse intrusion detection; Neural networks

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER CRIME; CONFORMAL MAPPING; FEEDFORWARD NEURAL NETWORKS; FINANCIAL DATA PROCESSING; LIGHTNING; PRINCIPAL COMPONENT ANALYSIS; RADIAL BASIS FUNCTION NETWORKS; SPEECH RECOGNITION;

EID: 53049099150     PISSN: 01674048     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cose.2008.06.001     Document Type: Article
Times cited : (75)

References (18)
  • 1
    • 2442424268 scopus 로고    scopus 로고
    • Ben Amor N, et al. Naïve Bayes vs decision trees in intrusion detection systems. In: The proceeding of the ACM symposium on applied computing, Cyprus; 2004. p. 420-4.
    • Ben Amor N, et al. Naïve Bayes vs decision trees in intrusion detection systems. In: The proceeding of the ACM symposium on applied computing, Cyprus; 2004. p. 420-4.
  • 2
    • 53049084235 scopus 로고    scopus 로고
    • Binh Viet N. Self organizing map (SOM) for anomaly detection, ; 2002 [accessed August 2006].
    • Binh Viet N. Self organizing map (SOM) for anomaly detection, ; 2002 [accessed August 2006].
  • 3
    • 53049096458 scopus 로고    scopus 로고
    • Cannady J. Artificial neural networks for misuse detection. In: The proceedings of the 1998 national information systems security conference (NISSC'98), Arlington, VA, ; 1998 [accessed August 2006].
    • Cannady J. Artificial neural networks for misuse detection. In: The proceedings of the 1998 national information systems security conference (NISSC'98), Arlington, VA, ; 1998 [accessed August 2006].
  • 4
    • 85019678573 scopus 로고    scopus 로고
    • Charron F, Ghosh A, Wanken J. Detecting anomalous and unknown intrusions against programs. In: 14th Annual Computer Security Applications Conference ; 1998. p. 259--67 [accessed August 2006].
    • Charron F, Ghosh A, Wanken J. Detecting anomalous and unknown intrusions against programs. In: 14th Annual Computer Security Applications Conference ; 1998. p. 259--67 [accessed August 2006].
  • 5
    • 53049089535 scopus 로고    scopus 로고
    • Cunningham R, Lippmann R. Improving intrusion detection performance using keyword selection and neural networks. In: The proceedings of the international symposium on recent advances in intrusion detection, Purdue, IN, ; 1999 [accessed on August 2006].
    • Cunningham R, Lippmann R. Improving intrusion detection performance using keyword selection and neural networks. In: The proceedings of the international symposium on recent advances in intrusion detection, Purdue, IN, ; 1999 [accessed on August 2006].
  • 6
    • 0026850007 scopus 로고    scopus 로고
    • Debar H, Becker M, Siboni D. A neural network component for an intrusion detection system. In: The proceedings of the 1992 IEEE symposium on research in computer security and privacy, Oakland, CA; May 1992. p. 240, 250.
    • Debar H, Becker M, Siboni D. A neural network component for an intrusion detection system. In: The proceedings of the 1992 IEEE symposium on research in computer security and privacy, Oakland, CA; May 1992. p. 240, 250.
  • 7
    • 34250185435 scopus 로고    scopus 로고
    • Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions
    • Faraoun K.M., and Boukelif A. Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions. International Journal of Computational Intelligence 3 2 (2006) 161-168
    • (2006) International Journal of Computational Intelligence , vol.3 , Issue.2 , pp. 161-168
    • Faraoun, K.M.1    Boukelif, A.2
  • 8
    • 85084160308 scopus 로고    scopus 로고
    • Ghosh AK, Schwartzbard A. A study in using neural networks for anomaly and misuse detection. In: The proceeding on the 8th USENIX security symposium, ; 1999 [accessed August 2006].
    • Ghosh AK, Schwartzbard A. A study in using neural networks for anomaly and misuse detection. In: The proceeding on the 8th USENIX security symposium, ; 1999 [accessed August 2006].
  • 9
    • 53049096879 scopus 로고    scopus 로고
    • Heywood M, Lichodzijewski P, Zincir-Heywood N. Dynamic intrusion detection using self-organizing maps. In: The annual Canadian information technology security symposium, ; 2002 [accessed August 2006].
    • Heywood M, Lichodzijewski P, Zincir-Heywood N. Dynamic intrusion detection using self-organizing maps. In: The annual Canadian information technology security symposium, ; 2002 [accessed August 2006].
  • 10
    • 53049101795 scopus 로고    scopus 로고
    • Horeis T. Intrusion detection with neural networks-combination of self-organizing maps and radial basis function networks for human expert integration. Computational Intelligence Society, Research report, ; 2003 [accessed August 2006].
    • Horeis T. Intrusion detection with neural networks-combination of self-organizing maps and radial basis function networks for human expert integration. Computational Intelligence Society, Research report, ; 2003 [accessed August 2006].
  • 12
    • 53049093641 scopus 로고    scopus 로고
    • KDD data set, ; 1999 [accessed on July 2006].
    • KDD data set, ; 1999 [accessed on July 2006].
  • 14
    • 0036079805 scopus 로고    scopus 로고
    • Lichodzijewski P, Zincir Heywood AN, Heywood MI. Host-based intrusion detection using self-organizing maps. In: The proceedings of the 2002 IEEE world congress on computational intelligence, Honolulu, HI; 2002. p. 1714-9.
    • Lichodzijewski P, Zincir Heywood AN, Heywood MI. Host-based intrusion detection using self-organizing maps. In: The proceedings of the 2002 IEEE world congress on computational intelligence, Honolulu, HI; 2002. p. 1714-9.
  • 16
    • 0036085392 scopus 로고    scopus 로고
    • Mukkamala S. Intrusion detection using neural networks and support vector machine. In: The proceedings of the 2002 IEEE international joint conference on neural networks, Honolulu, HI, ; 2002 [accessed August 2006].
    • Mukkamala S. Intrusion detection using neural networks and support vector machine. In: The proceedings of the 2002 IEEE international joint conference on neural networks, Honolulu, HI, ; 2002 [accessed August 2006].
  • 17
    • 53049088365 scopus 로고    scopus 로고
    • Ryan J, Lin M, Miikkulainen R. Intrusion detection with neural networks. In: AI approaches to fraud detection and risk management: papers from the 1997 AAAI workshop, Providence, RI; 1997. p. 72-9.
    • Ryan J, Lin M, Miikkulainen R. Intrusion detection with neural networks. In: AI approaches to fraud detection and risk management: papers from the 1997 AAAI workshop, Providence, RI; 1997. p. 72-9.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.