메뉴 건너뛰기




Volumn 30, Issue 1, 2007, Pages 60-80

Adaptive anomaly detection with evolving connectionist systems

Author keywords

Adaptive anomaly detection; Concept drift; EFuNN; Evolving connectionist systems; Fuzzy ART; Online learning

Indexed keywords

ADAPTIVE ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; ONLINE SYSTEMS;

EID: 33750516723     PISSN: 10848045     EISSN: 10958592     Source Type: Journal    
DOI: 10.1016/j.jnca.2005.08.005     Document Type: Article
Times cited : (38)

References (30)
  • 1
    • 33750509709 scopus 로고    scopus 로고
    • Carpenter GA, Grossberg S. editors. Pattern recognition by self-organizing neural networks. Cambridge, MA: MIT Press; 1991.
  • 2
    • 0026408256 scopus 로고
    • Fuzzy art: fast stable learning and categorization of analog patterns by an adaptive resonance system
    • Carpenter G.A., Grossberg S., and Rosen D.B. Fuzzy art: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4 (1991) 759-771
    • (1991) Neural Networks , vol.4 , pp. 759-771
    • Carpenter, G.A.1    Grossberg, S.2    Rosen, D.B.3
  • 3
    • 33750506808 scopus 로고    scopus 로고
    • Chang C-C, Lin C-J. LIBSVM: a library for support vector machines, 2001. URL http://www.csie.ntu.edu.tw/cjlin/libsvm
  • 4
    • 0026850007 scopus 로고    scopus 로고
    • Debar H, Becker M, Siboni D. A neural network component for an intrusion detection system. In: Proceedings of the 1992 IEEE symposium on security and privacy. Silver Spring, MD: IEEE Computer Society; 1992. p. 240.
  • 5
    • 33750504733 scopus 로고    scopus 로고
    • Eskin E. Anomaly detection over noisy data using learned probability distributions. In: Proceedings 17th international conference on machine learning. San Francisco, CA: Morgan Kaufmann; 2000. p. 255-62.
  • 6
    • 33750495466 scopus 로고    scopus 로고
    • Eskin E, Arnold A, Prerau M, Portnoy L, Stolfo S. A geometric framework for unsupervised anomaly detection: detecting intrusions in unlabeled data. In: Barbara D, Jajodia S. editors. Applications of data mining in computer security. Dordrecht: Kluwer; 2002.
  • 7
    • 33750516402 scopus 로고    scopus 로고
    • Eskin E, Miller M, Zhong Z-D, Yi G, Lee W-A, Stolfo S. Adaptive model generation for intrusion detection systems. In: Proceedings of the ACMCCS workshop on intrusion detection and prevention. Athens, Greece, 2000.
  • 8
    • 33750522887 scopus 로고    scopus 로고
    • Fan W. Cost-sensitive, scalable and adaptive learning using ensemble-based methods. PhD thesis, Columbia University, February 2001.
  • 9
    • 0029716418 scopus 로고    scopus 로고
    • Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA. A sense of self for unix processes. In: Proceedings of the 1996 IEEE symposium on security and privacy. Silver Spring, MD: IEEE Computer Society; 1996. p. 120.
  • 10
    • 85084160308 scopus 로고    scopus 로고
    • Ghosh AK, Schwartzbard A. A study in using neural networks for anomaly and misuse detection. In: Proceedings of the eighth USENIX security symposium, 1999.
  • 11
    • 33750533240 scopus 로고    scopus 로고
    • Hossain M, Bridges SM. A framework for an adaptive intrusion detection system with data mining. In: Proceedings of the 13th annual Canadian information technology security symposium. Ottawa, Canada, 2001.
  • 13
    • 33750505519 scopus 로고    scopus 로고
    • Javitz HS, Valdes A. The nides statistical component description and justification, Technical Report, Computer Science Laboratory, SRI International, Menlo Park, CA, March 1994.
  • 14
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/unsupervised on-line knowledge-based learning
    • Kasabov N. Evolving fuzzy neural networks for supervised/unsupervised on-line knowledge-based learning. IEEE Trans Man Mach Cybernet-Part B: Cybernet 31 6 (2001) 902-918
    • (2001) IEEE Trans Man Mach Cybernet-Part B: Cybernet , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 15
    • 33750519350 scopus 로고    scopus 로고
    • Kasabov N. Evolving connectionist systems: methods and applications in bioinformatics, brain study and intelligence machines. Berlin: Springer; 2002.
  • 16
    • 33750513906 scopus 로고    scopus 로고
    • Lane T, Brodley CE. Approaches to online learning and concept drift for user identification in computer security. In: Proceedings of the fourth international conference on knowledge discovery and data mining, 1998. p. 259-63.
  • 17
    • 77949731575 scopus 로고    scopus 로고
    • Temporal sequence learning and data reduction for anomaly detection
    • Lane T., and Brodley C.E. Temporal sequence learning and data reduction for anomaly detection. ACM Trans Inf Systems Security 2 3 (1999) 295-331
    • (1999) ACM Trans Inf Systems Security , vol.2 , Issue.3 , pp. 295-331
    • Lane, T.1    Brodley, C.E.2
  • 18
    • 33750517849 scopus 로고    scopus 로고
    • Lazarevic A, Ertoz L, Kumar V, Ozgur A, Srivastava J. A comparative study of anomaly detection schemes in network intrusion detection. In: Proceedings of the third SIAM international conference on data mining. San Francisco, CA: 2003. p. 25-36.
  • 19
    • 84885774862 scopus 로고    scopus 로고
    • A framework for constructing features and models for intrusion detection systems
    • Lee W., and Stolfo S.J. A framework for constructing features and models for intrusion detection systems. ACM Trans Inf Systems Security 3 4 (2000) 227-261
    • (2000) ACM Trans Inf Systems Security , vol.3 , Issue.4 , pp. 227-261
    • Lee, W.1    Stolfo, S.J.2
  • 20
    • 0036321445 scopus 로고    scopus 로고
    • Use of k-nearest neighbor classifier for intrusion detection
    • Liao Y., and Vemuri V.R. Use of k-nearest neighbor classifier for intrusion detection. Comput Security 21 5 (2002) 439-448
    • (2002) Comput Security , vol.21 , Issue.5 , pp. 439-448
    • Liao, Y.1    Vemuri, V.R.2
  • 21
    • 0242456801 scopus 로고    scopus 로고
    • Mahoney MV, Chan PK. Learning nonstationary models of normal network traffic for detecting novel attacks. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining. New York: ACM Press; 2002. p. 376-85.
  • 22
    • 0036931591 scopus 로고    scopus 로고
    • Maxion RA, Townsend TN. Masquerade detection using truncated command lines. In: Proceedings of international conference on dependable systems & networks. Washington DC: 2002. p. 219-28.
  • 23
    • 0012127229 scopus 로고    scopus 로고
    • Intrusion and intrusion detection
    • McHugh J. Intrusion and intrusion detection. Int J Inf Security 1 1 (2001) 14-35
    • (2001) Int J Inf Security , vol.1 , Issue.1 , pp. 14-35
    • McHugh, J.1
  • 25
    • 0242456797 scopus 로고    scopus 로고
    • Sequeira K, Zaki MJ. Admit: anomaly-based data mining for intrusions. In: Proceedings of SIGKDD, 2002. p. 386-95.
  • 26
    • 0024984441 scopus 로고    scopus 로고
    • Teng HS, Chen K, Lu SC. Adaptive real-time anomaly detection using inductively generated sequential patterns. In: Proceedings of IEEE symposium on security and privacy. Oakland, CA: 1990. p. 278-84.
  • 27
    • 33750512441 scopus 로고    scopus 로고
    • The third international knowledge discovery and data mining tools competition (kdd cup 1999) data, 1999. URL http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
  • 28
    • 70449658940 scopus 로고    scopus 로고
    • Valdes A. Detecting novel scans through pattern anomaly detection. In: Proceedings of DARPA information survivability conference and exposition. Washington, DC: 2003. p. 140-51.
  • 30
    • 3543125360 scopus 로고    scopus 로고
    • On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
    • Yamanishi K., Takeuchi J., and Williams G. On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining and Knowledge Discovery 8 (2004) 275-300
    • (2004) Data Mining and Knowledge Discovery , vol.8 , pp. 275-300
    • Yamanishi, K.1    Takeuchi, J.2    Williams, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.