-
1
-
-
69249230890
-
Intrusion detection by machine learning: a review
-
[1] Tsai, C-F., Hsu, Y-F., Lin, C-Y., Lin, W-Y., Intrusion detection by machine learning: a review. Expert Syst Appl 36 (2009), 11994–12000, 10.1016/j.eswa.2009.05.029.
-
(2009)
Expert Syst Appl
, vol.36
, pp. 11994-12000
-
-
Tsai, C.-F.1
Hsu, Y.-F.2
Lin, C.-Y.3
Lin, W.-Y.4
-
2
-
-
84863478979
-
A hybrid network intrusion detection system using simplified swarm optimization (SSO)
-
[2] Chung, Y.Y., Wahid, N., A hybrid network intrusion detection system using simplified swarm optimization (SSO). Appl Soft Comput 12 (2012), 3014–3022, 10.1016/j.asoc.2012.04.020.
-
(2012)
Appl Soft Comput
, vol.12
, pp. 3014-3022
-
-
Chung, Y.Y.1
Wahid, N.2
-
3
-
-
58149104386
-
Guide to intrusion detection and prevention systems (idps)
-
[3] Scarfone, K., Mell, P., Guide to intrusion detection and prevention systems (idps). NIST Spec Publ, 800, 2007, 94.
-
(2007)
NIST Spec Publ
, vol.800
, pp. 94
-
-
Scarfone, K.1
Mell, P.2
-
4
-
-
84870713037
-
Intrusion detection system: a comprehensive review
-
[4] Liao, H-J., Richard Lin, C-H., Lin, Y-C., Tung, K-Y., Intrusion detection system: a comprehensive review. J Netw Comput Appl 36 (2013), 16–24, 10.1016/j.jnca.2012.09.004.
-
(2013)
J Netw Comput Appl
, vol.36
, pp. 16-24
-
-
Liao, H.-J.1
Richard Lin, C.-H.2
Lin, Y.-C.3
Tung, K.-Y.4
-
5
-
-
84894903349
-
A survey on feature selection methods
-
[5] Chandrashekar, G., Sahin, F., A survey on feature selection methods. Comput Electr Eng 40 (2014), 16–28, 10.1016/j.compeleceng.2013.11.024.
-
(2014)
Comput Electr Eng
, vol.40
, pp. 16-28
-
-
Chandrashekar, G.1
Sahin, F.2
-
6
-
-
84925585448
-
A relative decision entropy-based feature selection approach
-
[6] Jiang, F., Sui, Y., Zhou, L., A relative decision entropy-based feature selection approach. Pattern Recognit 48:7 (2015), 2151–2163.
-
(2015)
Pattern Recognit
, vol.48
, Issue.7
, pp. 2151-2163
-
-
Jiang, F.1
Sui, Y.2
Zhou, L.3
-
8
-
-
85020242244
-
-
Finding Rough Set reducts with ant colony optimization. Proc 2003 UK Work Comput Intell 2003:15–22.
-
[8] Jensen R., Jensen R., Shen Q. Finding Rough Set reducts with ant colony optimization. Proc 2003 UK Work Comput Intell 2003:15–22.
-
-
-
Jensen, R.1
Jensen, R.2
Shen, Q.3
-
9
-
-
84876731442
-
Designing of online intrusion detection system using rough set theory and Q-learning algorithm
-
[9] Sengupta, N., Sen, J., Sil, J., Saha, M., Designing of online intrusion detection system using rough set theory and Q-learning algorithm. Neurocomputing 111 (2013), 161–168, 10.1016/j.neucom.2012.12.023.
-
(2013)
Neurocomputing
, vol.111
, pp. 161-168
-
-
Sengupta, N.1
Sen, J.2
Sil, J.3
Saha, M.4
-
10
-
-
33947421283
-
Fuzzy-Rough Sets assisted attribute selection
-
[10] Jensen, R., Shen, Q., Fuzzy-Rough Sets assisted attribute selection. IEEE Trans Fuzzy Syst 15:1 (2007), 73–89.
-
(2007)
IEEE Trans Fuzzy Syst
, vol.15
, Issue.1
, pp. 73-89
-
-
Jensen, R.1
Shen, Q.2
-
11
-
-
5844243848
-
An attribute-oriented rough set approach for knowledge discovery in databases
-
Springer London
-
[11] Hu, X., Cercone, N., Han, J., An attribute-oriented rough set approach for knowledge discovery in databases. Rough sets, fuzzy sets and knowledge discovery, 1994, Springer, London, 90–99.
-
(1994)
Rough sets, fuzzy sets and knowledge discovery
, pp. 90-99
-
-
Hu, X.1
Cercone, N.2
Han, J.3
-
12
-
-
0037692973
-
Feature ranking in rough sets
-
[12] Hu, K., Lu, Y., Shi, C., Feature ranking in rough sets. AI Commun 16:1 (2003), 41–50.
-
(2003)
AI Commun
, vol.16
, Issue.1
, pp. 41-50
-
-
Hu, K.1
Lu, Y.2
Shi, C.3
-
13
-
-
58249084603
-
Exploring the boundary region of tolerance rough sets for feature selection
-
[13] Mac Parthaláin, N., Shen, Q., Exploring the boundary region of tolerance rough sets for feature selection. Pattern Recognit 42:5 (2009), 655–667.
-
(2009)
Pattern Recognit
, vol.42
, Issue.5
, pp. 655-667
-
-
Mac Parthaláin, N.1
Shen, Q.2
-
14
-
-
0036948613
-
Approximate entropy reducts
-
[14] Ślezak, D., Approximate entropy reducts. Fundam Informaticae 53:3-4 (2002), 365–390.
-
(2002)
Fundam Informaticae
, vol.53
, Issue.3-4
, pp. 365-390
-
-
Ślezak, D.1
-
15
-
-
85020252377
-
-
of C, 2006 undefined. A quick attribute reduction algorithm with complexity of max (O (| C || U |), O (| C | 2 | U / C |. Test.scholarmate.com n.d.
-
[15] Science J. of C, 2006 undefined. A quick attribute reduction algorithm with complexity of max (O (| C || U |), O (| C | 2 | U / C |. Test.scholarmate.com n.d.
-
-
-
Science, J.1
-
16
-
-
33845523839
-
Feature selection based on rough sets and particle swarm optimization
-
[16] Wang, X., Yang, J., Teng, X., Xia, W., Jensen, R., Feature selection based on rough sets and particle swarm optimization. Pattern Recognit Lett 28:4 (2007), 459–471.
-
(2007)
Pattern Recognit Lett
, vol.28
, Issue.4
, pp. 459-471
-
-
Wang, X.1
Yang, J.2
Teng, X.3
Xia, W.4
Jensen, R.5
-
17
-
-
27744565978
-
Rough Sets
-
[17] Pawlak, Z., Rough Sets. Int J Comput Inf 11:5 (1982), 341–356.
-
(1982)
Int J Comput Inf
, vol.11
, Issue.5
, pp. 341-356
-
-
Pawlak, Z.1
-
18
-
-
0029405527
-
Rough Sets
-
[18] Pawlak, Z, Grzymala-Busse, J, Slowinski, R, Ziarko, W, Rough Sets. Communications of the ACM 38:11 (1995), 88–95.
-
(1995)
Communications of the ACM
, vol.38
, Issue.11
, pp. 88-95
-
-
Pawlak, Z.1
Grzymala-Busse, J.2
Slowinski, R.3
Ziarko, W.4
-
19
-
-
85020262803
-
-
Bello R. Rough Set Theory: a true landmark in data analysis. 2009.
-
[19] Abraham A., FALC R., Bello R. Rough Set Theory: a true landmark in data analysis. 2009.
-
-
-
Abraham, A.1
FALC, R.2
-
20
-
-
85020315889
-
-
Minieka E. Graphs, and hypergraphs. 1973.
-
[20] Berge C., Minieka E. Graphs, and hypergraphs. 1973.
-
-
-
Berge, C.1
-
21
-
-
84994275509
-
Rough Set-Hypergraph-based feature selection approach for intrusion detection systems
-
[21] Raman, M.G., Kannan, K., Pal, S.K., Sriram, V.S., Rough Set-Hypergraph-based feature selection approach for intrusion detection systems. Def Sci 66:6 (2016), 612–617.
-
(2016)
Def Sci
, vol.66
, Issue.6
, pp. 612-617
-
-
Raman, M.G.1
Kannan, K.2
Pal, S.K.3
Sriram, V.S.4
-
22
-
-
84988688678
-
Hypergraph-based feature selection technique for medical diagnosis
-
[22] Somu, N., Raman, M.R.G., Kirthivasan, K., Sriram, V.S.S., Hypergraph-based feature selection technique for medical diagnosis. J Med Syst, 40, 2016, 239, 10.1007/s10916-016-0600-8.
-
(2016)
J Med Syst
, vol.40
, pp. 239
-
-
Somu, N.1
Raman, M.R.G.2
Kirthivasan, K.3
Sriram, V.S.S.4
-
23
-
-
84988841912
-
A computational model for ranking cloud service providers using hypergraph-based techniques
-
[23] Somu, N., Kirthivasan, K., SS, V.S., A computational model for ranking cloud service providers using hypergraph-based techniques. Futur Gener Comput Syst 68 (2017), 14–30, 10.1016/j.future.2016.08.014.
-
(2017)
Futur Gener Comput Syst
, vol.68
, pp. 14-30
-
-
Somu, N.1
Kirthivasan, K.2
SS, V.S.3
-
24
-
-
77955303956
-
Root mean square filter for noisy images based on hypergraph model
-
[24] Kannan, K., Kanna, B.R., Aravindan, C., Root mean square filter for noisy images based on hypergraph model. Image Vis Comput 28 (2010), 1329–1338, 10.1016/j.imavis.2010.01.013.
-
(2010)
Image Vis Comput
, vol.28
, pp. 1329-1338
-
-
Kannan, K.1
Kanna, B.R.2
Aravindan, C.3
-
25
-
-
27844519832
-
An efficient algorithm for the transversal hypergraph generation
-
[25] Kavvadias, D.J., Stavropoulos, E.C., An efficient algorithm for the transversal hypergraph generation. J Graph Algorithms Appl 9:2 (2005), 239–264.
-
(2005)
J Graph Algorithms Appl
, vol.9
, Issue.2
, pp. 239-264
-
-
Kavvadias, D.J.1
Stavropoulos, E.C.2
-
26
-
-
0000251093
-
Identifying the minimal transversals of a hypergraph and related problems
-
[26] Eiter, T., Gottlob, G., Identifying the minimal transversals of a hypergraph and related problems. SIAM J Comput 24:6 (1995), 1278–1304.
-
(1995)
SIAM J Comput
, vol.24
, Issue.6
, pp. 1278-1304
-
-
Eiter, T.1
Gottlob, G.2
-
27
-
-
84887826239
-
Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis
-
[27] Inbarani, H.H., Azar, A.T., Jothi, G., Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Comput Methods Programs Biomed 113 (2014), 175–185, 10.1016/j.cmpb.2013.10.007.
-
(2014)
Comput Methods Programs Biomed
, vol.113
, pp. 175-185
-
-
Inbarani, H.H.1
Azar, A.T.2
Jothi, G.3
-
28
-
-
85020242171
-
-
KDD Cup 99 Dataset, Available online at:, 1999 n.d.
-
[28] KDD Cup 99 Dataset, Available online at: 〈http://kdd.ics.uci.edu/databases/ kddcup99/kddcup99.html〉, 1999 n.d.
-
-
-
-
29
-
-
85009962818
-
Data Mining: Practical machine learning tools and techniques
-
Morgan Kaufmann
-
[29] Witten, IH, Frank, E, Hall, MA, Pal, CJ, Data Mining: Practical machine learning tools and techniques. 2016, Morgan Kaufmann.
-
(2016)
-
-
Witten, I.H.1
Frank, E.2
Hall, M.A.3
Pal, C.J.4
-
30
-
-
0036662454
-
Decision table reduction based on conditional information entropy
-
[30] Wang, G., Yu, H., Yang, D., Decision table reduction based on conditional information entropy. Chinese J Comput, 2002.
-
(2002)
Chinese J Comput
-
-
Wang, G.1
Yu, H.2
Yang, D.3
|