메뉴 건너뛰기




Volumn 41, Issue 4, 2017, Pages

A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care

Author keywords

Machine learning (ML); Medicine and health care; Predictive model

Indexed keywords

ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BAYESIAN LEARNING; CLUSTER ANALYSIS; DECISION TREE; HEALTH CARE; K NEAREST NEIGHBOR; LOGISTIC REGRESSION ANALYSIS; MACHINE LEARNING; MEDICINE; PATTERN RECOGNITION; PREDICTION; REINFORCEMENT MACHINE LEARNING; STATISTICS; SUPERVISED MACHINE LEARNING; SUPPORT VECTOR MACHINE; UNSUPERVISED MACHINE LEARNING; HEALTH CARE DELIVERY; HUMAN; ORGANIZATION AND MANAGEMENT; THEORETICAL MODEL;

EID: 85015047040     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-017-0715-6     Document Type: Article
Times cited : (146)

References (77)
  • 2
    • 84940200748 scopus 로고    scopus 로고
    • Localization-based system challenges in vehicular ad hoc networks: survey
    • Qureshi, K.N., and Abdullah, A.H., Localization-based system challenges in vehicular ad hoc networks: survey. Smart Computing Review. 4:515–528, 2014.
    • (2014) Smart Computing Review , vol.4 , pp. 515-528
    • Qureshi, K.N.1    Abdullah, A.H.2
  • 3
    • 84906350749 scopus 로고    scopus 로고
    • Adaptation of wireless sensor network in industries and their architecture, standards and applications
    • Qureshi, K.N., and Abdullah, A.H., Adaptation of wireless sensor network in industries and their architecture, standards and applications. World Applied Sciences Journal. 30:1218–1223, 2014.
    • (2014) World Applied Sciences Journal , vol.30 , pp. 1218-1223
    • Qureshi, K.N.1    Abdullah, A.H.2
  • 4
    • 0032989451 scopus 로고    scopus 로고
    • Predicting survival using simple clinical variables: a case study in traumatic brain injury
    • COI: 1:STN:280:DyaK1M7gtFGgtA%3D%3D, PID: 9886445
    • Signorini, D.F., Andrews, P.J., Jones, P.A., Wardlaw, J.M., and Miller, J.D., Predicting survival using simple clinical variables: a case study in traumatic brain injury. J. Neurol. Neurosurg. Psychiatry. 66:20–25, 1999.
    • (1999) J. Neurol. Neurosurg. Psychiatry , vol.66 , pp. 20-25
    • Signorini, D.F.1    Andrews, P.J.2    Jones, P.A.3    Wardlaw, J.M.4    Miller, J.D.5
  • 8
    • 78650169163 scopus 로고    scopus 로고
    • The use of artificial intelligence based techniques for intrusion detection: a review
    • Kumar, G., Kumar, K., and Sachdeva, M., The use of artificial intelligence based techniques for intrusion detection: a review. Artif. Intell. Rev. 34:369–387, 2010.
    • (2010) Artif. Intell. Rev. , vol.34 , pp. 369-387
    • Kumar, G.1    Kumar, K.2    Sachdeva, M.3
  • 12
    • 85015054410 scopus 로고
    • Readings in machine learning, Morgan Kaufmann
    • Shavlik, J. W. and Dietterich T. G., Readings in machine learning: Morgan Kaufmann, 1990.
    • (1990) G.
    • Shavlik, J.W.1    Dietterich, T.2
  • 14
    • 0028833197 scopus 로고
    • Somatosensory evoked potentials for prediction of outcome in acute severe brain injury
    • COI: 1:STN:280:DyaK2M7hsVOksg%3D%3D, PID: 7815222
    • Beca, J., Cox, P., Taylor, M., Bohn, D., Butt, W., Logan, W., et al., Somatosensory evoked potentials for prediction of outcome in acute severe brain injury. J. Pediatr. 126:44–49, 1995.
    • (1995) J. Pediatr. , vol.126 , pp. 44-49
    • Beca, J.1    Cox, P.2    Taylor, M.3    Bohn, D.4    Butt, W.5    Logan, W.6
  • 15
    • 84877934266 scopus 로고    scopus 로고
    • A critical review for an accurate and dynamic prediction for the outcomes of traumatic brain injury based on Glasgow outcome scale
    • Alanazi, H.O., Abdullah, A.H., and Al Juma, M., A critical review for an accurate and dynamic prediction for the outcomes of traumatic brain injury based on Glasgow outcome scale. J. Med. Sci. 13:244, 2013.
    • (2013) J. Med. Sci. , vol.13 , pp. 244
    • Alanazi, H.O.1    Abdullah, A.H.2    Al Juma, M.3
  • 16
    • 85015003419 scopus 로고    scopus 로고
    • Agrawal, D., A comprehensive study of data mining and application, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), vol. 2, pp. pp: 249–252, 2013.
  • 17
    • 2942676267 scopus 로고    scopus 로고
    • Data mining; a conceptual overview
    • Jackson, J., Data mining; a conceptual overview. Commun. Assoc. Inf. Syst. 8:19, 2002.
    • (2002) Commun. Assoc. Inf. Syst. , vol.8 , pp. 19
    • Jackson, J.1
  • 19
    • 34249972544 scopus 로고
    • Machine learning: a survey of current techniques
    • McDonald, C., Machine learning: a survey of current techniques. Artif. Intell. Rev. 3:243–280, 1989.
    • (1989) Artif. Intell. Rev. , vol.3 , pp. 243-280
    • McDonald, C.1
  • 20
    • 57649171566 scopus 로고    scopus 로고
    • An evaluation of dimension reduction techniques for one-class classification
    • Villalba, S.D., and Cunningham, P., An evaluation of dimension reduction techniques for one-class classification. Artif. Intell. Rev. 27:273–294, 2007.
    • (2007) Artif. Intell. Rev. , vol.27 , pp. 273-294
    • Villalba, S.D.1    Cunningham, P.2
  • 21
    • 0036613147 scopus 로고    scopus 로고
    • Spatial contextual classification and prediction models for mining geospatial data
    • Shekhar, S., Schrater, P.R., Vatsavai, R.R., Wu, W., and Chawla, S., Spatial contextual classification and prediction models for mining geospatial data. IEEE Trans. Multimedia. 4:174–188, 2002.
    • (2002) IEEE Trans. Multimedia , vol.4 , pp. 174-188
    • Shekhar, S.1    Schrater, P.R.2    Vatsavai, R.R.3    Wu, W.4    Chawla, S.5
  • 22
    • 38349031393 scopus 로고    scopus 로고
    • Machine learning: a review of classification and combining techniques
    • Kotsiantis, S.B., Zaharakis, I.D., and Pintelas, P.E., Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26:159–190, 2006.
    • (2006) Artif. Intell. Rev. , vol.26 , pp. 159-190
    • Kotsiantis, S.B.1    Zaharakis, I.D.2    Pintelas, P.E.3
  • 23
    • 84885307323 scopus 로고    scopus 로고
    • Missing values: how many can they be to preserve classification reliability?
    • Juhola, M., and Laurikkala, J., Missing values: how many can they be to preserve classification reliability? Artif. Intell. Rev. 40:231–245, 2013.
    • (2013) Artif. Intell. Rev. , vol.40 , pp. 231-245
    • Juhola, M.1    Laurikkala, J.2
  • 25
    • 84896995829 scopus 로고    scopus 로고
    • A new classification approach for neural networks hardware: from standards chips to embedded systems on chip
    • Izeboudjen, N., Larbes, C., and Farah, A., A new classification approach for neural networks hardware: from standards chips to embedded systems on chip. Artif. Intell. Rev. 41:491–534, 2014.
    • (2014) Artif. Intell. Rev. , vol.41 , pp. 491-534
    • Izeboudjen, N.1    Larbes, C.2    Farah, A.3
  • 27
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., and Vapnik, V., Support-vector networks. Mach. Learn. 20:273–297, 1995.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 30
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes
    • Jordan, A., On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. Adv. Neural Inf. Proces. Syst. 14:841, 2002.
    • (2002) Adv. Neural Inf. Proces. Syst. , vol.14 , pp. 841
    • Jordan, A.1
  • 32
    • 0006452367 scopus 로고    scopus 로고
    • The alternating decision tree learning algorithm
    • Freund, Y. and Mason, L., The alternating decision tree learning algorithm, In icml, 1999, pp. 124–133.
    • (1999) In icml , pp. 124-133
    • Freund, Y.1    Mason, L.2
  • 33
    • 85015106975 scopus 로고    scopus 로고
    • Applied logistic regression, Wiley
    • Hosmer, D. W. Jr and Lemeshow, S., Applied logistic regression: Wiley, 2004.
    • (2004) S.
    • Hosmer, D.W.1
  • 35
    • 78650231996 scopus 로고    scopus 로고
    • Brain death prediction based on ensembled artificial neural networks in neurosurgical intensive care unit
    • COI: 1:CAS:528:DC%2BC3cXhsF2msb3J
    • Liu, Q., Cui, X., Abbod, M.F., Huang, S.-J., Han, Y.-Y., and Shieh, J.-S., Brain death prediction based on ensembled artificial neural networks in neurosurgical intensive care unit. J. Taiwan Inst. Chem. Eng. 42:97–107, 2011.
    • (2011) J. Taiwan Inst. Chem. Eng. , vol.42 , pp. 97-107
    • Liu, Q.1    Cui, X.2    Abbod, M.F.3    Huang, S.-J.4    Han, Y.-Y.5    Shieh, J.-S.6
  • 36
    • 77956926311 scopus 로고    scopus 로고
    • Use of an artificial neural network to predict head injury outcome: clinical article
    • PID: 20020844
    • Rughani, A.I., Dumont, T.M., Lu, Z., Bongard, J., Horgan, M.A., Penar, P.L., et al., Use of an artificial neural network to predict head injury outcome: clinical article. J. Neurosurg. 113:585–590, 2010.
    • (2010) J. Neurosurg. , vol.113 , pp. 585-590
    • Rughani, A.I.1    Dumont, T.M.2    Lu, Z.3    Bongard, J.4    Horgan, M.A.5    Penar, P.L.6
  • 37
    • 77955582584 scopus 로고    scopus 로고
    • Which method of posttraumatic stress disorder classification best predicts psychosocial function in children with traumatic brain injury?
    • PID: 20541906
    • Iselin, G., Le Brocque, R., Kenardy, J., Anderson, V., and McKinlay, L., Which method of posttraumatic stress disorder classification best predicts psychosocial function in children with traumatic brain injury? J. Anxiety Disord. 24:774–779, 2010.
    • (2010) J. Anxiety Disord. , vol.24 , pp. 774-779
    • Iselin, G.1    Le Brocque, R.2    Kenardy, J.3    Anderson, V.4    McKinlay, L.5
  • 38
    • 36148985372 scopus 로고    scopus 로고
    • Detection of traumatic brain injuries using fuzzy logic algorithm
    • Güler, I., Tunca, A., and Gülbandilar, E., Detection of traumatic brain injuries using fuzzy logic algorithm. Expert Systems with Applications. 34:1312–1317, 2008.
    • (2008) Expert Systems with Applications , vol.34 , pp. 1312-1317
    • Güler, I.1    Tunca, A.2    Gülbandilar, E.3
  • 39
    • 67349267290 scopus 로고    scopus 로고
    • Introduction of affinity set and its application in data-mining example of delayed diagnosis
    • Chen, Y.-W., Larbani, M., Hsieh, C.-Y., and Chen, C.-W., Introduction of affinity set and its application in data-mining example of delayed diagnosis. Expert Systems with Applications. 36:10883–10889, 2009.
    • (2009) Expert Systems with Applications , vol.36 , pp. 10883-10889
    • Chen, Y.-W.1    Larbani, M.2    Hsieh, C.-Y.3    Chen, C.-W.4
  • 40
    • 33747828217 scopus 로고    scopus 로고
    • BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences
    • COI: 1:CAS:528:DC%2BD28Xps1yht78%3D, PID: 16845003
    • Wang, L., and Brown, S.J., BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res. 34:W243–W248, 2006.
    • (2006) Nucleic Acids Res. , vol.34 , pp. W243-W248
    • Wang, L.1    Brown, S.J.2
  • 42
    • 0142148183 scopus 로고    scopus 로고
    • Application of support vector machines for T-cell epitopes prediction
    • COI: 1:CAS:528:DC%2BD3sXot1Crsr4%3D, PID: 14555632
    • Zhao, Y., Pinilla, C., Valmori, D., Martin, R., and Simon, R., Application of support vector machines for T-cell epitopes prediction. Bioinformatics. 19:1978–1984, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 1978-1984
    • Zhao, Y.1    Pinilla, C.2    Valmori, D.3    Martin, R.4    Simon, R.5
  • 43
    • 68349120144 scopus 로고    scopus 로고
    • Prediction of outcome utilizing both physiological and biochemical parameters in severe head injury
    • PID: 19371145
    • Low, D., Kuralmani, V., Ng, S.K., Lee, K.K., Ng, I., and Ang, B.T., Prediction of outcome utilizing both physiological and biochemical parameters in severe head injury. J. Neurotrauma. 26:1177–1182, 2009.
    • (2009) J. Neurotrauma , vol.26 , pp. 1177-1182
    • Low, D.1    Kuralmani, V.2    Ng, S.K.3    Lee, K.K.4    Ng, I.5    Ang, B.T.6
  • 46
    • 0035048075 scopus 로고    scopus 로고
    • Can we predict poor outcome at presentation in patients with lobar hemorrhage?
    • COI: 1:STN:280:DC%2BD3Mzot12ktQ%3D%3D, PID: 11306765
    • Flemming, K.D., Wijdicks, E.F., and Li, H., Can we predict poor outcome at presentation in patients with lobar hemorrhage? Cerebrovasc. Dis. 11:183–189, 2001.
    • (2001) Cerebrovasc. Dis. , vol.11 , pp. 183-189
    • Flemming, K.D.1    Wijdicks, E.F.2    Li, H.3
  • 48
    • 79957589099 scopus 로고    scopus 로고
    • Prognostic predictors of outcome in an operative series in traumatic brain injury patients
    • PID: 21540008
    • Kuo, J.-R., Lo, C.-J., Lu, C.-L., Chio, C.-C., Wang, C.-C., and Lin, K.-C., Prognostic predictors of outcome in an operative series in traumatic brain injury patients. J. Formos. Med. Assoc. 110:258–264, 2011.
    • (2011) J. Formos. Med. Assoc. , vol.110 , pp. 258-264
    • Kuo, J.-R.1    Lo, C.-J.2    Lu, C.-L.3    Chio, C.-C.4    Wang, C.-C.5    Lin, K.-C.6
  • 49
    • 84877953269 scopus 로고    scopus 로고
    • Prediction of outcome in the vegetative state by machine learning algorithms: a model for clinicians?
    • Pignolo, L., and Lagani, V., Prediction of outcome in the vegetative state by machine learning algorithms: a model for clinicians? J. Softw. Eng. Appl. 4:388, 2011.
    • (2011) J. Softw. Eng. Appl. , vol.4 , pp. 388
    • Pignolo, L.1    Lagani, V.2
  • 50
    • 80052024526 scopus 로고    scopus 로고
    • Comparison of regression tree data mining methods for prediction of mortality in head injury
    • Sut, N., and Simsek, O., Comparison of regression tree data mining methods for prediction of mortality in head injury. Expert systems with applications. 38:15534–15539, 2011.
    • (2011) Expert systems with applications , vol.38 , pp. 15534-15539
    • Sut, N.1    Simsek, O.2
  • 51
    • 63349110176 scopus 로고    scopus 로고
    • A comparative analysis of multi-level computer-assisted decision making systems for traumatic injuries
    • COI: 1:CAS:528:DC%2BD1MXht1Olu7nN
    • Ji, S.-Y., Smith, R., Huynh, T., and Najarian, K., A comparative analysis of multi-level computer-assisted decision making systems for traumatic injuries. BMC Med. Inform. Decis. Mak. 9:1, 2009.
    • (2009) BMC Med. Inform. Decis. Mak. , vol.9 , pp. 1
    • Ji, S.-Y.1    Smith, R.2    Huynh, T.3    Najarian, K.4
  • 52
    • 33846819034 scopus 로고    scopus 로고
    • Hybrid outcome prediction model for severe traumatic brain injury
    • PID: 17263677
    • Pang, B.C., Kuralmani, V., Joshi, R., Hongli, Y., Lee, K.K., Ang, B.T., et al., Hybrid outcome prediction model for severe traumatic brain injury. J. Neurotrauma. 24:136–146, 2007.
    • (2007) J. Neurotrauma , vol.24 , pp. 136-146
    • Pang, B.C.1    Kuralmani, V.2    Joshi, R.3    Hongli, Y.4    Lee, K.K.5    Ang, B.T.6
  • 53
    • 34247368915 scopus 로고    scopus 로고
    • Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury
    • COI: 1:CAS:528:DC%2BD2sXkslOiu7s%3D, PID: 17368446
    • Mac Donald, C., Dikranian, K., Song, S., Bayly, P., Holtzman, D., and Brody, D., Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp. Neurol. 205:116–131, 2007.
    • (2007) Exp. Neurol. , vol.205 , pp. 116-131
    • Mac Donald, C.1    Dikranian, K.2    Song, S.3    Bayly, P.4    Holtzman, D.5    Brody, D.6
  • 54
    • 50949101668 scopus 로고    scopus 로고
    • Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics
    • PID: 18684008
    • Steyerberg, E.W., Mushkudiani, N., Perel, P., Butcher, I., Lu, J., McHugh, G.S., et al., Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 5:e165, 2008.
    • (2008) PLoS Med , vol.5
    • Steyerberg, E.W.1    Mushkudiani, N.2    Perel, P.3    Butcher, I.4    Lu, J.5    McHugh, G.S.6
  • 55
    • 33845801568 scopus 로고    scopus 로고
    • Prognosis following severe head injury: development and validation of a model for prediction of death, disability, and functional recovery
    • Cremer, O.L., Moons, K.G., van Dijk, G.W., van Balen, P., and Kalkman, C.J., Prognosis following severe head injury: development and validation of a model for prediction of death, disability, and functional recovery. J. Trauma Acute Care Surg. 61:1484–1491, 2006.
    • (2006) J. Trauma Acute Care Surg. , vol.61 , pp. 1484-1491
    • Cremer, O.L.1    Moons, K.G.2    van Dijk, G.W.3    van Balen, P.4    Kalkman, C.J.5
  • 56
    • 13844309030 scopus 로고    scopus 로고
    • Prediction of ‘awakening’and outcome in prolonged acute coma from severe traumatic brain injury: evidence for validity of short latency SEPs
    • PID: 15589201
    • Amantini, A., Grippo, A., Fossi, S., Cesaretti, C., Piccioli, A., Peris, A., et al., Prediction of ‘awakening’and outcome in prolonged acute coma from severe traumatic brain injury: evidence for validity of short latency SEPs. Clin. Neurophysiol. 116:229–235, 2005.
    • (2005) Clin. Neurophysiol. , vol.116 , pp. 229-235
    • Amantini, A.1    Grippo, A.2    Fossi, S.3    Cesaretti, C.4    Piccioli, A.5    Peris, A.6
  • 57
    • 21244478322 scopus 로고    scopus 로고
    • Predicting outcome after traumatic brain injury: development and validation of a prognostic score based on admission characteristics
    • PID: 16238481
    • Hukkelhoven, C.W., Steyerberg, E.W., Habbema, J.D.F., Farace, E., Marmarou, A., Murray, G.D., et al., Predicting outcome after traumatic brain injury: development and validation of a prognostic score based on admission characteristics. J. Neurotrauma. 22:1025–1039, 2005.
    • (2005) J. Neurotrauma , vol.22 , pp. 1025-1039
    • Hukkelhoven, C.W.1    Steyerberg, E.W.2    Habbema, J.D.F.3    Farace, E.4    Marmarou, A.5    Murray, G.D.6
  • 58
    • 28844496263 scopus 로고    scopus 로고
    • Derivation of a clinical decision rule to guide the interhospital transfer of patients with blunt traumatic brain injury
    • COI: 1:STN:280:DC%2BD2Mnhs1Oiug%3D%3D, PID: 16299192
    • Newgard, C., Hedges, J., Stone, J., Lenfesty, B., Diggs, B., Arthur, M., et al., Derivation of a clinical decision rule to guide the interhospital transfer of patients with blunt traumatic brain injury. Emerg. Med. J. 22:855–860, 2005.
    • (2005) Emerg. Med. J. , vol.22 , pp. 855-860
    • Newgard, C.1    Hedges, J.2    Stone, J.3    Lenfesty, B.4    Diggs, B.5    Arthur, M.6
  • 59
    • 3242889811 scopus 로고    scopus 로고
    • Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables
    • COI: 1:STN:280:DC%2BD2cvgsVOqtg%3D%3D
    • Rovlias, A., and Kotsou, S., Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables. J. Neurosurg. 21:886–893, 2004.
    • (2004) J. Neurosurg. , vol.21 , pp. 886-893
    • Rovlias, A.1    Kotsou, S.2
  • 60
    • 0036320447 scopus 로고    scopus 로고
    • Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression
    • PID: 12186460
    • Andrews, P.J., Sleeman, D.H., Statham, P.F., McQuatt, A., Corruble, V., Jones, P.A., et al., Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression. J. Neurosurg. 97:326–336, 2002.
    • (2002) J. Neurosurg. , vol.97 , pp. 326-336
    • Andrews, P.J.1    Sleeman, D.H.2    Statham, P.F.3    McQuatt, A.4    Corruble, V.5    Jones, P.A.6
  • 61
    • 0032895111 scopus 로고    scopus 로고
    • Selected techniques for data mining in medicine
    • PID: 10225344
    • Lavrač, N., Selected techniques for data mining in medicine. Artif. Intell. Med. 16:3–23, 1999.
    • (1999) Artif. Intell. Med. , vol.16 , pp. 3-23
    • Lavrač, N.1
  • 62
    • 0032513945 scopus 로고    scopus 로고
    • Prediction of recovery from post-traumatic vegetative state with cerebral magnetic-resonance imaging
    • COI: 1:STN:280:DyaK1c3pslyksw%3D%3D
    • Kampfl, A., Schmutzhard, E., Franz, G., Pfausler, B., Haring, H.-P., Ulmer, H., et al., Prediction of recovery from post-traumatic vegetative state with cerebral magnetic-resonance imaging. The Lancet. 351:1763–1767, 1998.
    • (1998) The Lancet , vol.351 , pp. 1763-1767
    • Kampfl, A.1    Schmutzhard, E.2    Franz, G.3    Pfausler, B.4    Haring, H.-P.5    Ulmer, H.6
  • 63
    • 0030914688 scopus 로고    scopus 로고
    • Outcome after severe head injury: an analysis of prediction based upon comparison of neural network versus logistic regression analysis
    • COI: 1:STN:280:DyaK2szjsFOitg%3D%3D, PID: 9192380
    • Lang, E.W., Pitts, L.H., Damron, S.L., and Rutledge, R., Outcome after severe head injury: an analysis of prediction based upon comparison of neural network versus logistic regression analysis. Neurol. Res. 19:274–280, 1997.
    • (1997) Neurol. Res. , vol.19 , pp. 274-280
    • Lang, E.W.1    Pitts, L.H.2    Damron, S.L.3    Rutledge, R.4
  • 64
    • 0030470464 scopus 로고    scopus 로고
    • Severe head injuries: an outcome prediction and survival analysis
    • COI: 1:STN:280:DyaK2s7jvF2hsg%3D%3D, PID: 8986491
    • Combes, P., Fauvage, B., Colonna, M., Passagia, J., Chirossel, J., and Jacquot, C., Severe head injuries: an outcome prediction and survival analysis. Intensive Care Med. 22:1391–1395, 1996.
    • (1996) Intensive Care Med. , vol.22 , pp. 1391-1395
    • Combes, P.1    Fauvage, B.2    Colonna, M.3    Passagia, J.4    Chirossel, J.5    Jacquot, C.6
  • 66
    • 0027049937 scopus 로고
    • Outcome prediction in early management of severe head injury: an experience in Malaysia
    • COI: 1:STN:280:DyaK3s7ht1arsQ%3D%3D, PID: 1472321
    • Selladurai, B.M., Jayakumar, R., Tan, Y.Y., and Low, H.C., Outcome prediction in early management of severe head injury: an experience in Malaysia. Br. J. Neurosurg. 6:549–557, 1992.
    • (1992) Br. J. Neurosurg. , vol.6 , pp. 549-557
    • Selladurai, B.M.1    Jayakumar, R.2    Tan, Y.Y.3    Low, H.C.4
  • 67
    • 0023794976 scopus 로고
    • Enhanced specificity of prognosis in severe head injury
    • COI: 1:STN:280:DyaL1czgtVWltA%3D%3D, PID: 3404236
    • Choi, S.C., Narayan, R.K., Anderson, R.L., and Ward, J.D., Enhanced specificity of prognosis in severe head injury. J. Neurosurg. 69:381–385, 1988.
    • (1988) J. Neurosurg. , vol.69 , pp. 381-385
    • Choi, S.C.1    Narayan, R.K.2    Anderson, R.L.3    Ward, J.D.4
  • 68
    • 0020609827 scopus 로고
    • Chart for outcome prediction in severe head injury
    • COI: 1:STN:280:DyaL3s3ktVyjsg%3D%3D, PID: 6864297
    • Choi, S.C., Ward, J.D., and Becker, D.P., Chart for outcome prediction in severe head injury. J. Neurosurg. 59:294–297, 1983.
    • (1983) J. Neurosurg. , vol.59 , pp. 294-297
    • Choi, S.C.1    Ward, J.D.2    Becker, D.P.3
  • 70
  • 71
    • 84922001788 scopus 로고    scopus 로고
    • Comparison of machine learning techniques for target detection
    • Vink, J.P., and de Haan, G., Comparison of machine learning techniques for target detection. Artif. Intell. Rev. 43:125–139, 2015.
    • (2015) Artif. Intell. Rev. , vol.43 , pp. 125-139
    • Vink, J.P.1    de Haan, G.2
  • 72
    • 77953886400 scopus 로고    scopus 로고
    • BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features
    • COI: 1:CAS:528:DC%2BC3cXhtF2gur%2FE
    • Wang, L., Huang, C., Yang, M.Q., and Yang, J.Y., BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Syst. Biol. 4:1, 2010.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 1
    • Wang, L.1    Huang, C.2    Yang, M.Q.3    Yang, J.Y.4
  • 73
    • 33745756516 scopus 로고    scopus 로고
    • The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM
    • Foody, G.M., and Mathur, A., The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM. Remote Sens. Environ. 103:179–189, 2006.
    • (2006) Remote Sens. Environ. , vol.103 , pp. 179-189
    • Foody, G.M.1    Mathur, A.2
  • 76
    • 33748692895 scopus 로고    scopus 로고
    • Confidence-based classifier design
    • Li, M., and Sethi, I.K., Confidence-based classifier design. Pattern Recognit. 39:1230–1240, 2006.
    • (2006) Pattern Recognit. , vol.39 , pp. 1230-1240
    • Li, M.1    Sethi, I.K.2
  • 77
    • 0033969016 scopus 로고    scopus 로고
    • Neural network modeling for surgical decisions on traumatic brain injury patients
    • COI: 1:STN:280:DC%2BD3c7ntVGntw%3D%3D, PID: 10708251
    • Li, Y.-C., Liu, L., Chiu, W.-T., and Jian, W.-S., Neural network modeling for surgical decisions on traumatic brain injury patients. Int. J. Med. Inform. 57:1–9, 2000.
    • (2000) Int. J. Med. Inform. , vol.57 , pp. 1-9
    • Li, Y.-C.1    Liu, L.2    Chiu, W.-T.3    Jian, W.-S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.