-
1
-
-
84923141632
-
W., Wireless sensor based hybrid architecture for vehicular ad hoc networks
-
Qureshi, K. N., Abdullah, A. H., and Anwar, R. W., Wireless sensor based hybrid architecture for vehicular ad hoc networks, TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 12, pp. 942–949, 2014.
-
(2014)
TELKOMNIKA (Telecommunication Computing Electronics and Control)
, vol.12
, pp. 942-949
-
-
Qureshi, K.N.1
Abdullah, A.H.2
Anwar, R.3
-
2
-
-
84940200748
-
Localization-based system challenges in vehicular ad hoc networks: survey
-
Qureshi, K.N., and Abdullah, A.H., Localization-based system challenges in vehicular ad hoc networks: survey. Smart Computing Review. 4:515–528, 2014.
-
(2014)
Smart Computing Review
, vol.4
, pp. 515-528
-
-
Qureshi, K.N.1
Abdullah, A.H.2
-
3
-
-
84906350749
-
Adaptation of wireless sensor network in industries and their architecture, standards and applications
-
Qureshi, K.N., and Abdullah, A.H., Adaptation of wireless sensor network in industries and their architecture, standards and applications. World Applied Sciences Journal. 30:1218–1223, 2014.
-
(2014)
World Applied Sciences Journal
, vol.30
, pp. 1218-1223
-
-
Qureshi, K.N.1
Abdullah, A.H.2
-
4
-
-
0032989451
-
Predicting survival using simple clinical variables: a case study in traumatic brain injury
-
COI: 1:STN:280:DyaK1M7gtFGgtA%3D%3D, PID: 9886445
-
Signorini, D.F., Andrews, P.J., Jones, P.A., Wardlaw, J.M., and Miller, J.D., Predicting survival using simple clinical variables: a case study in traumatic brain injury. J. Neurol. Neurosurg. Psychiatry. 66:20–25, 1999.
-
(1999)
J. Neurol. Neurosurg. Psychiatry
, vol.66
, pp. 20-25
-
-
Signorini, D.F.1
Andrews, P.J.2
Jones, P.A.3
Wardlaw, J.M.4
Miller, J.D.5
-
7
-
-
85015000322
-
-
Artificial intelligence programming: Psychology Press
-
Charniak, E., Riesbeck, C. K., McDermott, D. V., and Meehan, J. R., Artificial intelligence programming: Psychology Press, 2014.
-
(2014)
R.
-
-
Charniak, E.1
Riesbeck, C.K.2
McDermott, D.V.3
Meehan, J.4
-
8
-
-
78650169163
-
The use of artificial intelligence based techniques for intrusion detection: a review
-
Kumar, G., Kumar, K., and Sachdeva, M., The use of artificial intelligence based techniques for intrusion detection: a review. Artif. Intell. Rev. 34:369–387, 2010.
-
(2010)
Artif. Intell. Rev.
, vol.34
, pp. 369-387
-
-
Kumar, G.1
Kumar, K.2
Sachdeva, M.3
-
9
-
-
0003437980
-
-
Bratko, I., Michalski, R. S., and Kubat, M.,1999
-
Bratko, I., Michalski, R. S., and Kubat, M., Machine learning and data mining: methods and applications, 1999.
-
(1999)
Machine learning and data mining: methods and applications
-
-
-
10
-
-
50149105156
-
C., Machine learning
-
Michie, D., Spiegelhalter, D. J., and Taylor, C. C., Machine learning, neural and statistical classification, 1994.
-
(1994)
neural and statistical classification
-
-
Michie, D.1
Spiegelhalter, D.J.2
Taylor, C.3
-
12
-
-
85015054410
-
-
Readings in machine learning, Morgan Kaufmann
-
Shavlik, J. W. and Dietterich T. G., Readings in machine learning: Morgan Kaufmann, 1990.
-
(1990)
G.
-
-
Shavlik, J.W.1
Dietterich, T.2
-
13
-
-
0003851190
-
-
Bratko, I., Mozetič, I., and Lavrač, N.,1990
-
Bratko, I., Mozetič, I., and Lavrač, N., KARDIO: a study in deep and qualitative knowledge for expert systems: MIT Press, 1990.
-
(1990)
KARDIO: a study in deep and qualitative knowledge for expert systems: MIT Press
-
-
-
14
-
-
0028833197
-
Somatosensory evoked potentials for prediction of outcome in acute severe brain injury
-
COI: 1:STN:280:DyaK2M7hsVOksg%3D%3D, PID: 7815222
-
Beca, J., Cox, P., Taylor, M., Bohn, D., Butt, W., Logan, W., et al., Somatosensory evoked potentials for prediction of outcome in acute severe brain injury. J. Pediatr. 126:44–49, 1995.
-
(1995)
J. Pediatr.
, vol.126
, pp. 44-49
-
-
Beca, J.1
Cox, P.2
Taylor, M.3
Bohn, D.4
Butt, W.5
Logan, W.6
-
15
-
-
84877934266
-
A critical review for an accurate and dynamic prediction for the outcomes of traumatic brain injury based on Glasgow outcome scale
-
Alanazi, H.O., Abdullah, A.H., and Al Juma, M., A critical review for an accurate and dynamic prediction for the outcomes of traumatic brain injury based on Glasgow outcome scale. J. Med. Sci. 13:244, 2013.
-
(2013)
J. Med. Sci.
, vol.13
, pp. 244
-
-
Alanazi, H.O.1
Abdullah, A.H.2
Al Juma, M.3
-
16
-
-
85015003419
-
-
Agrawal, D., A comprehensive study of data mining and application, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), vol. 2, pp. pp: 249–252, 2013.
-
-
-
-
17
-
-
2942676267
-
Data mining; a conceptual overview
-
Jackson, J., Data mining; a conceptual overview. Commun. Assoc. Inf. Syst. 8:19, 2002.
-
(2002)
Commun. Assoc. Inf. Syst.
, vol.8
, pp. 19
-
-
Jackson, J.1
-
19
-
-
34249972544
-
Machine learning: a survey of current techniques
-
McDonald, C., Machine learning: a survey of current techniques. Artif. Intell. Rev. 3:243–280, 1989.
-
(1989)
Artif. Intell. Rev.
, vol.3
, pp. 243-280
-
-
McDonald, C.1
-
20
-
-
57649171566
-
An evaluation of dimension reduction techniques for one-class classification
-
Villalba, S.D., and Cunningham, P., An evaluation of dimension reduction techniques for one-class classification. Artif. Intell. Rev. 27:273–294, 2007.
-
(2007)
Artif. Intell. Rev.
, vol.27
, pp. 273-294
-
-
Villalba, S.D.1
Cunningham, P.2
-
21
-
-
0036613147
-
Spatial contextual classification and prediction models for mining geospatial data
-
Shekhar, S., Schrater, P.R., Vatsavai, R.R., Wu, W., and Chawla, S., Spatial contextual classification and prediction models for mining geospatial data. IEEE Trans. Multimedia. 4:174–188, 2002.
-
(2002)
IEEE Trans. Multimedia
, vol.4
, pp. 174-188
-
-
Shekhar, S.1
Schrater, P.R.2
Vatsavai, R.R.3
Wu, W.4
Chawla, S.5
-
22
-
-
38349031393
-
Machine learning: a review of classification and combining techniques
-
Kotsiantis, S.B., Zaharakis, I.D., and Pintelas, P.E., Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26:159–190, 2006.
-
(2006)
Artif. Intell. Rev.
, vol.26
, pp. 159-190
-
-
Kotsiantis, S.B.1
Zaharakis, I.D.2
Pintelas, P.E.3
-
23
-
-
84885307323
-
Missing values: how many can they be to preserve classification reliability?
-
Juhola, M., and Laurikkala, J., Missing values: how many can they be to preserve classification reliability? Artif. Intell. Rev. 40:231–245, 2013.
-
(2013)
Artif. Intell. Rev.
, vol.40
, pp. 231-245
-
-
Juhola, M.1
Laurikkala, J.2
-
25
-
-
84896995829
-
A new classification approach for neural networks hardware: from standards chips to embedded systems on chip
-
Izeboudjen, N., Larbes, C., and Farah, A., A new classification approach for neural networks hardware: from standards chips to embedded systems on chip. Artif. Intell. Rev. 41:491–534, 2014.
-
(2014)
Artif. Intell. Rev.
, vol.41
, pp. 491-534
-
-
Izeboudjen, N.1
Larbes, C.2
Farah, A.3
-
27
-
-
34249753618
-
Support-vector networks
-
Cortes, C., and Vapnik, V., Support-vector networks. Mach. Learn. 20:273–297, 1995.
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
28
-
-
24144437271
-
K., Learning a kernel matrix for nonlinear dimensionality reduction
-
Weinberger, K. Q., Sha, F., and Saul, L. K., Learning a kernel matrix for nonlinear dimensionality reduction, In Proceedings of the twenty-first international conference on Machine learning, 2004, p. 106.
-
(2004)
In Proceedings of the twenty-first international conference on Machine learning
, pp. 106
-
-
Weinberger, K.Q.1
Sha, F.2
Saul, L.3
-
30
-
-
59549087165
-
On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes
-
Jordan, A., On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. Adv. Neural Inf. Proces. Syst. 14:841, 2002.
-
(2002)
Adv. Neural Inf. Proces. Syst.
, vol.14
, pp. 841
-
-
Jordan, A.1
-
32
-
-
0006452367
-
The alternating decision tree learning algorithm
-
Freund, Y. and Mason, L., The alternating decision tree learning algorithm, In icml, 1999, pp. 124–133.
-
(1999)
In icml
, pp. 124-133
-
-
Freund, Y.1
Mason, L.2
-
33
-
-
85015106975
-
-
Applied logistic regression, Wiley
-
Hosmer, D. W. Jr and Lemeshow, S., Applied logistic regression: Wiley, 2004.
-
(2004)
S.
-
-
Hosmer, D.W.1
-
34
-
-
84886592716
-
A Study on Selective Data Mining Algorithms
-
Pathak, A., Sehgal, M., and Christopher, D., A Study on Selective Data Mining Algorithms, International Journal of Computer Science Issues (IJCSI), vol. 8, 2011.
-
(2011)
International Journal of Computer Science Issues (IJCSI), vol
, pp. 8
-
-
Pathak, A.1
Sehgal, M.2
Christopher, D.3
-
35
-
-
78650231996
-
Brain death prediction based on ensembled artificial neural networks in neurosurgical intensive care unit
-
COI: 1:CAS:528:DC%2BC3cXhsF2msb3J
-
Liu, Q., Cui, X., Abbod, M.F., Huang, S.-J., Han, Y.-Y., and Shieh, J.-S., Brain death prediction based on ensembled artificial neural networks in neurosurgical intensive care unit. J. Taiwan Inst. Chem. Eng. 42:97–107, 2011.
-
(2011)
J. Taiwan Inst. Chem. Eng.
, vol.42
, pp. 97-107
-
-
Liu, Q.1
Cui, X.2
Abbod, M.F.3
Huang, S.-J.4
Han, Y.-Y.5
Shieh, J.-S.6
-
36
-
-
77956926311
-
Use of an artificial neural network to predict head injury outcome: clinical article
-
PID: 20020844
-
Rughani, A.I., Dumont, T.M., Lu, Z., Bongard, J., Horgan, M.A., Penar, P.L., et al., Use of an artificial neural network to predict head injury outcome: clinical article. J. Neurosurg. 113:585–590, 2010.
-
(2010)
J. Neurosurg.
, vol.113
, pp. 585-590
-
-
Rughani, A.I.1
Dumont, T.M.2
Lu, Z.3
Bongard, J.4
Horgan, M.A.5
Penar, P.L.6
-
37
-
-
77955582584
-
Which method of posttraumatic stress disorder classification best predicts psychosocial function in children with traumatic brain injury?
-
PID: 20541906
-
Iselin, G., Le Brocque, R., Kenardy, J., Anderson, V., and McKinlay, L., Which method of posttraumatic stress disorder classification best predicts psychosocial function in children with traumatic brain injury? J. Anxiety Disord. 24:774–779, 2010.
-
(2010)
J. Anxiety Disord.
, vol.24
, pp. 774-779
-
-
Iselin, G.1
Le Brocque, R.2
Kenardy, J.3
Anderson, V.4
McKinlay, L.5
-
38
-
-
36148985372
-
Detection of traumatic brain injuries using fuzzy logic algorithm
-
Güler, I., Tunca, A., and Gülbandilar, E., Detection of traumatic brain injuries using fuzzy logic algorithm. Expert Systems with Applications. 34:1312–1317, 2008.
-
(2008)
Expert Systems with Applications
, vol.34
, pp. 1312-1317
-
-
Güler, I.1
Tunca, A.2
Gülbandilar, E.3
-
39
-
-
67349267290
-
Introduction of affinity set and its application in data-mining example of delayed diagnosis
-
Chen, Y.-W., Larbani, M., Hsieh, C.-Y., and Chen, C.-W., Introduction of affinity set and its application in data-mining example of delayed diagnosis. Expert Systems with Applications. 36:10883–10889, 2009.
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 10883-10889
-
-
Chen, Y.-W.1
Larbani, M.2
Hsieh, C.-Y.3
Chen, C.-W.4
-
40
-
-
33747828217
-
BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences
-
COI: 1:CAS:528:DC%2BD28Xps1yht78%3D, PID: 16845003
-
Wang, L., and Brown, S.J., BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res. 34:W243–W248, 2006.
-
(2006)
Nucleic Acids Res.
, vol.34
, pp. W243-W248
-
-
Wang, L.1
Brown, S.J.2
-
41
-
-
78049440289
-
D., Mitchell, P. et al
-
Aribisala, B. S., Cowie, C. J., He, J., Wood, J., Mendelow, A. D., Mitchell, P. et al., Multi-parametric classification of traumatic brain injury patients using automatic analysis of quantitative MRI scans, in International Workshop on Medical Imaging and Virtual Reality, 2010, pp. 51–59.
-
(2010)
Multi-parametric classification of traumatic brain injury patients using automatic analysis of quantitative MRI scans, in International Workshop on Medical Imaging and Virtual Reality
, pp. 51-59
-
-
Aribisala, B.S.1
Cowie, C.J.2
He, J.3
Wood, J.4
Mendelow, A.5
-
42
-
-
0142148183
-
Application of support vector machines for T-cell epitopes prediction
-
COI: 1:CAS:528:DC%2BD3sXot1Crsr4%3D, PID: 14555632
-
Zhao, Y., Pinilla, C., Valmori, D., Martin, R., and Simon, R., Application of support vector machines for T-cell epitopes prediction. Bioinformatics. 19:1978–1984, 2003.
-
(2003)
Bioinformatics
, vol.19
, pp. 1978-1984
-
-
Zhao, Y.1
Pinilla, C.2
Valmori, D.3
Martin, R.4
Simon, R.5
-
43
-
-
68349120144
-
Prediction of outcome utilizing both physiological and biochemical parameters in severe head injury
-
PID: 19371145
-
Low, D., Kuralmani, V., Ng, S.K., Lee, K.K., Ng, I., and Ang, B.T., Prediction of outcome utilizing both physiological and biochemical parameters in severe head injury. J. Neurotrauma. 26:1177–1182, 2009.
-
(2009)
J. Neurotrauma
, vol.26
, pp. 1177-1182
-
-
Low, D.1
Kuralmani, V.2
Ng, S.K.3
Lee, K.K.4
Ng, I.5
Ang, B.T.6
-
44
-
-
0025895471
-
Prediction tree for severely head-injured patients
-
COI: 1:STN:280:DyaK3Mzgtlahtg%3D%3D, PID: 2072162
-
Choi, S.C., Muizelaar, J.P., Barnes, T.Y., Marmarou, A., Brooks, D.M., and Young, H.F., Prediction tree for severely head-injured patients. J. Neurosurg. 75:251–255, 1991.
-
(1991)
J. Neurosurg.
, vol.75
, pp. 251-255
-
-
Choi, S.C.1
Muizelaar, J.P.2
Barnes, T.Y.3
Marmarou, A.4
Brooks, D.M.5
Young, H.F.6
-
45
-
-
84866050608
-
-
A. McQuatt, P. Andrews, D. Sleeman, V. Corruble, and P. Jones,1999, pp. 336–345
-
A. McQuatt, P. Andrews, D. Sleeman, V. Corruble, and P. Jones, The analysis of head injury data using decision tree techniques, in Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making, 1999, pp. 336–345.
-
(1999)
The analysis of head injury data using decision tree techniques, in Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making
-
-
-
46
-
-
0035048075
-
Can we predict poor outcome at presentation in patients with lobar hemorrhage?
-
COI: 1:STN:280:DC%2BD3Mzot12ktQ%3D%3D, PID: 11306765
-
Flemming, K.D., Wijdicks, E.F., and Li, H., Can we predict poor outcome at presentation in patients with lobar hemorrhage? Cerebrovasc. Dis. 11:183–189, 2001.
-
(2001)
Cerebrovasc. Dis.
, vol.11
, pp. 183-189
-
-
Flemming, K.D.1
Wijdicks, E.F.2
Li, H.3
-
47
-
-
84864936878
-
M., et al
-
Kalpakis, K., Yang, S., Hu, P. F., Mackenzie, C. F., Stansbury, L. G., Stein, D. M., et al., Outcome prediction for patients with severe traumatic brain injury using permutation entropy analysis of electronic vital signs data, in International Workshop on Machine Learning and Data Mining in Pattern Recognition, 2012, pp. 415–426.
-
(2012)
Outcome prediction for patients with severe traumatic brain injury using permutation entropy analysis of electronic vital signs data, in International Workshop on Machine Learning and Data Mining in Pattern Recognition
, pp. 415-426
-
-
Kalpakis, K.1
Yang, S.2
Hu, P.F.3
Mackenzie, C.F.4
Stansbury, L.G.5
Stein, D.6
-
48
-
-
79957589099
-
Prognostic predictors of outcome in an operative series in traumatic brain injury patients
-
PID: 21540008
-
Kuo, J.-R., Lo, C.-J., Lu, C.-L., Chio, C.-C., Wang, C.-C., and Lin, K.-C., Prognostic predictors of outcome in an operative series in traumatic brain injury patients. J. Formos. Med. Assoc. 110:258–264, 2011.
-
(2011)
J. Formos. Med. Assoc.
, vol.110
, pp. 258-264
-
-
Kuo, J.-R.1
Lo, C.-J.2
Lu, C.-L.3
Chio, C.-C.4
Wang, C.-C.5
Lin, K.-C.6
-
49
-
-
84877953269
-
Prediction of outcome in the vegetative state by machine learning algorithms: a model for clinicians?
-
Pignolo, L., and Lagani, V., Prediction of outcome in the vegetative state by machine learning algorithms: a model for clinicians? J. Softw. Eng. Appl. 4:388, 2011.
-
(2011)
J. Softw. Eng. Appl.
, vol.4
, pp. 388
-
-
Pignolo, L.1
Lagani, V.2
-
50
-
-
80052024526
-
Comparison of regression tree data mining methods for prediction of mortality in head injury
-
Sut, N., and Simsek, O., Comparison of regression tree data mining methods for prediction of mortality in head injury. Expert systems with applications. 38:15534–15539, 2011.
-
(2011)
Expert systems with applications
, vol.38
, pp. 15534-15539
-
-
Sut, N.1
Simsek, O.2
-
51
-
-
63349110176
-
A comparative analysis of multi-level computer-assisted decision making systems for traumatic injuries
-
COI: 1:CAS:528:DC%2BD1MXht1Olu7nN
-
Ji, S.-Y., Smith, R., Huynh, T., and Najarian, K., A comparative analysis of multi-level computer-assisted decision making systems for traumatic injuries. BMC Med. Inform. Decis. Mak. 9:1, 2009.
-
(2009)
BMC Med. Inform. Decis. Mak.
, vol.9
, pp. 1
-
-
Ji, S.-Y.1
Smith, R.2
Huynh, T.3
Najarian, K.4
-
52
-
-
33846819034
-
Hybrid outcome prediction model for severe traumatic brain injury
-
PID: 17263677
-
Pang, B.C., Kuralmani, V., Joshi, R., Hongli, Y., Lee, K.K., Ang, B.T., et al., Hybrid outcome prediction model for severe traumatic brain injury. J. Neurotrauma. 24:136–146, 2007.
-
(2007)
J. Neurotrauma
, vol.24
, pp. 136-146
-
-
Pang, B.C.1
Kuralmani, V.2
Joshi, R.3
Hongli, Y.4
Lee, K.K.5
Ang, B.T.6
-
53
-
-
34247368915
-
Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury
-
COI: 1:CAS:528:DC%2BD2sXkslOiu7s%3D, PID: 17368446
-
Mac Donald, C., Dikranian, K., Song, S., Bayly, P., Holtzman, D., and Brody, D., Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp. Neurol. 205:116–131, 2007.
-
(2007)
Exp. Neurol.
, vol.205
, pp. 116-131
-
-
Mac Donald, C.1
Dikranian, K.2
Song, S.3
Bayly, P.4
Holtzman, D.5
Brody, D.6
-
54
-
-
50949101668
-
Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics
-
PID: 18684008
-
Steyerberg, E.W., Mushkudiani, N., Perel, P., Butcher, I., Lu, J., McHugh, G.S., et al., Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 5:e165, 2008.
-
(2008)
PLoS Med
, vol.5
-
-
Steyerberg, E.W.1
Mushkudiani, N.2
Perel, P.3
Butcher, I.4
Lu, J.5
McHugh, G.S.6
-
55
-
-
33845801568
-
Prognosis following severe head injury: development and validation of a model for prediction of death, disability, and functional recovery
-
Cremer, O.L., Moons, K.G., van Dijk, G.W., van Balen, P., and Kalkman, C.J., Prognosis following severe head injury: development and validation of a model for prediction of death, disability, and functional recovery. J. Trauma Acute Care Surg. 61:1484–1491, 2006.
-
(2006)
J. Trauma Acute Care Surg.
, vol.61
, pp. 1484-1491
-
-
Cremer, O.L.1
Moons, K.G.2
van Dijk, G.W.3
van Balen, P.4
Kalkman, C.J.5
-
56
-
-
13844309030
-
Prediction of ‘awakening’and outcome in prolonged acute coma from severe traumatic brain injury: evidence for validity of short latency SEPs
-
PID: 15589201
-
Amantini, A., Grippo, A., Fossi, S., Cesaretti, C., Piccioli, A., Peris, A., et al., Prediction of ‘awakening’and outcome in prolonged acute coma from severe traumatic brain injury: evidence for validity of short latency SEPs. Clin. Neurophysiol. 116:229–235, 2005.
-
(2005)
Clin. Neurophysiol.
, vol.116
, pp. 229-235
-
-
Amantini, A.1
Grippo, A.2
Fossi, S.3
Cesaretti, C.4
Piccioli, A.5
Peris, A.6
-
57
-
-
21244478322
-
Predicting outcome after traumatic brain injury: development and validation of a prognostic score based on admission characteristics
-
PID: 16238481
-
Hukkelhoven, C.W., Steyerberg, E.W., Habbema, J.D.F., Farace, E., Marmarou, A., Murray, G.D., et al., Predicting outcome after traumatic brain injury: development and validation of a prognostic score based on admission characteristics. J. Neurotrauma. 22:1025–1039, 2005.
-
(2005)
J. Neurotrauma
, vol.22
, pp. 1025-1039
-
-
Hukkelhoven, C.W.1
Steyerberg, E.W.2
Habbema, J.D.F.3
Farace, E.4
Marmarou, A.5
Murray, G.D.6
-
58
-
-
28844496263
-
Derivation of a clinical decision rule to guide the interhospital transfer of patients with blunt traumatic brain injury
-
COI: 1:STN:280:DC%2BD2Mnhs1Oiug%3D%3D, PID: 16299192
-
Newgard, C., Hedges, J., Stone, J., Lenfesty, B., Diggs, B., Arthur, M., et al., Derivation of a clinical decision rule to guide the interhospital transfer of patients with blunt traumatic brain injury. Emerg. Med. J. 22:855–860, 2005.
-
(2005)
Emerg. Med. J.
, vol.22
, pp. 855-860
-
-
Newgard, C.1
Hedges, J.2
Stone, J.3
Lenfesty, B.4
Diggs, B.5
Arthur, M.6
-
59
-
-
3242889811
-
Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables
-
COI: 1:STN:280:DC%2BD2cvgsVOqtg%3D%3D
-
Rovlias, A., and Kotsou, S., Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables. J. Neurosurg. 21:886–893, 2004.
-
(2004)
J. Neurosurg.
, vol.21
, pp. 886-893
-
-
Rovlias, A.1
Kotsou, S.2
-
60
-
-
0036320447
-
Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression
-
PID: 12186460
-
Andrews, P.J., Sleeman, D.H., Statham, P.F., McQuatt, A., Corruble, V., Jones, P.A., et al., Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression. J. Neurosurg. 97:326–336, 2002.
-
(2002)
J. Neurosurg.
, vol.97
, pp. 326-336
-
-
Andrews, P.J.1
Sleeman, D.H.2
Statham, P.F.3
McQuatt, A.4
Corruble, V.5
Jones, P.A.6
-
61
-
-
0032895111
-
Selected techniques for data mining in medicine
-
PID: 10225344
-
Lavrač, N., Selected techniques for data mining in medicine. Artif. Intell. Med. 16:3–23, 1999.
-
(1999)
Artif. Intell. Med.
, vol.16
, pp. 3-23
-
-
Lavrač, N.1
-
62
-
-
0032513945
-
Prediction of recovery from post-traumatic vegetative state with cerebral magnetic-resonance imaging
-
COI: 1:STN:280:DyaK1c3pslyksw%3D%3D
-
Kampfl, A., Schmutzhard, E., Franz, G., Pfausler, B., Haring, H.-P., Ulmer, H., et al., Prediction of recovery from post-traumatic vegetative state with cerebral magnetic-resonance imaging. The Lancet. 351:1763–1767, 1998.
-
(1998)
The Lancet
, vol.351
, pp. 1763-1767
-
-
Kampfl, A.1
Schmutzhard, E.2
Franz, G.3
Pfausler, B.4
Haring, H.-P.5
Ulmer, H.6
-
63
-
-
0030914688
-
Outcome after severe head injury: an analysis of prediction based upon comparison of neural network versus logistic regression analysis
-
COI: 1:STN:280:DyaK2szjsFOitg%3D%3D, PID: 9192380
-
Lang, E.W., Pitts, L.H., Damron, S.L., and Rutledge, R., Outcome after severe head injury: an analysis of prediction based upon comparison of neural network versus logistic regression analysis. Neurol. Res. 19:274–280, 1997.
-
(1997)
Neurol. Res.
, vol.19
, pp. 274-280
-
-
Lang, E.W.1
Pitts, L.H.2
Damron, S.L.3
Rutledge, R.4
-
64
-
-
0030470464
-
Severe head injuries: an outcome prediction and survival analysis
-
COI: 1:STN:280:DyaK2s7jvF2hsg%3D%3D, PID: 8986491
-
Combes, P., Fauvage, B., Colonna, M., Passagia, J., Chirossel, J., and Jacquot, C., Severe head injuries: an outcome prediction and survival analysis. Intensive Care Med. 22:1391–1395, 1996.
-
(1996)
Intensive Care Med.
, vol.22
, pp. 1391-1395
-
-
Combes, P.1
Fauvage, B.2
Colonna, M.3
Passagia, J.4
Chirossel, J.5
Jacquot, C.6
-
65
-
-
0028108698
-
Temporal profile of outcomes in severe head injury
-
COI: 1:STN:280:DyaK2czgtVeksg%3D%3D, PID: 8027796
-
Choi, S.C., Barnes, T.Y., Bullock, R., Germanson, T.A., Marmarou, A., and Young, H.F., Temporal profile of outcomes in severe head injury. J. Neurosurg. 81:169–173, 1994.
-
(1994)
J. Neurosurg.
, vol.81
, pp. 169-173
-
-
Choi, S.C.1
Barnes, T.Y.2
Bullock, R.3
Germanson, T.A.4
Marmarou, A.5
Young, H.F.6
-
66
-
-
0027049937
-
Outcome prediction in early management of severe head injury: an experience in Malaysia
-
COI: 1:STN:280:DyaK3s7ht1arsQ%3D%3D, PID: 1472321
-
Selladurai, B.M., Jayakumar, R., Tan, Y.Y., and Low, H.C., Outcome prediction in early management of severe head injury: an experience in Malaysia. Br. J. Neurosurg. 6:549–557, 1992.
-
(1992)
Br. J. Neurosurg.
, vol.6
, pp. 549-557
-
-
Selladurai, B.M.1
Jayakumar, R.2
Tan, Y.Y.3
Low, H.C.4
-
67
-
-
0023794976
-
Enhanced specificity of prognosis in severe head injury
-
COI: 1:STN:280:DyaL1czgtVWltA%3D%3D, PID: 3404236
-
Choi, S.C., Narayan, R.K., Anderson, R.L., and Ward, J.D., Enhanced specificity of prognosis in severe head injury. J. Neurosurg. 69:381–385, 1988.
-
(1988)
J. Neurosurg.
, vol.69
, pp. 381-385
-
-
Choi, S.C.1
Narayan, R.K.2
Anderson, R.L.3
Ward, J.D.4
-
68
-
-
0020609827
-
Chart for outcome prediction in severe head injury
-
COI: 1:STN:280:DyaL3s3ktVyjsg%3D%3D, PID: 6864297
-
Choi, S.C., Ward, J.D., and Becker, D.P., Chart for outcome prediction in severe head injury. J. Neurosurg. 59:294–297, 1983.
-
(1983)
J. Neurosurg.
, vol.59
, pp. 294-297
-
-
Choi, S.C.1
Ward, J.D.2
Becker, D.P.3
-
69
-
-
84920254781
-
A survey of emerging patterns for supervised classification
-
García-Borroto, M., Martínez-Trinidad, J.F., and Carrasco-Ochoa, J.A., A survey of emerging patterns for supervised classification. Artif. Intell. Rev. 42:705–721, 2014.
-
(2014)
Artif. Intell. Rev.
, vol.42
, pp. 705-721
-
-
García-Borroto, M.1
Martínez-Trinidad, J.F.2
Carrasco-Ochoa, J.A.3
-
70
-
-
77953583996
-
Private predictions on hidden Markov models
-
Polat, H., Du, W., Renckes, S., and Oysal, Y., Private predictions on hidden Markov models. Artif. Intell. Rev. 34:53–72, 2010.
-
(2010)
Artif. Intell. Rev.
, vol.34
, pp. 53-72
-
-
Polat, H.1
Du, W.2
Renckes, S.3
Oysal, Y.4
-
71
-
-
84922001788
-
Comparison of machine learning techniques for target detection
-
Vink, J.P., and de Haan, G., Comparison of machine learning techniques for target detection. Artif. Intell. Rev. 43:125–139, 2015.
-
(2015)
Artif. Intell. Rev.
, vol.43
, pp. 125-139
-
-
Vink, J.P.1
de Haan, G.2
-
72
-
-
77953886400
-
BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features
-
COI: 1:CAS:528:DC%2BC3cXhtF2gur%2FE
-
Wang, L., Huang, C., Yang, M.Q., and Yang, J.Y., BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Syst. Biol. 4:1, 2010.
-
(2010)
BMC Syst. Biol.
, vol.4
, pp. 1
-
-
Wang, L.1
Huang, C.2
Yang, M.Q.3
Yang, J.Y.4
-
73
-
-
33745756516
-
The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM
-
Foody, G.M., and Mathur, A., The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM. Remote Sens. Environ. 103:179–189, 2006.
-
(2006)
Remote Sens. Environ.
, vol.103
, pp. 179-189
-
-
Foody, G.M.1
Mathur, A.2
-
74
-
-
0142025124
-
Constructing support vector machine ensemble
-
Kim, H.-C., Pang, S., Je, H.-M., Kim, D., and Bang, S.Y., Constructing support vector machine ensemble. Pattern Recognit. 36:2757–2767, 2003.
-
(2003)
Pattern Recognit.
, vol.36
, pp. 2757-2767
-
-
Kim, H.-C.1
Pang, S.2
Je, H.-M.3
Kim, D.4
Bang, S.Y.5
-
76
-
-
33748692895
-
Confidence-based classifier design
-
Li, M., and Sethi, I.K., Confidence-based classifier design. Pattern Recognit. 39:1230–1240, 2006.
-
(2006)
Pattern Recognit.
, vol.39
, pp. 1230-1240
-
-
Li, M.1
Sethi, I.K.2
-
77
-
-
0033969016
-
Neural network modeling for surgical decisions on traumatic brain injury patients
-
COI: 1:STN:280:DC%2BD3c7ntVGntw%3D%3D, PID: 10708251
-
Li, Y.-C., Liu, L., Chiu, W.-T., and Jian, W.-S., Neural network modeling for surgical decisions on traumatic brain injury patients. Int. J. Med. Inform. 57:1–9, 2000.
-
(2000)
Int. J. Med. Inform.
, vol.57
, pp. 1-9
-
-
Li, Y.-C.1
Liu, L.2
Chiu, W.-T.3
Jian, W.-S.4
|