메뉴 건너뛰기




Volumn 34, Issue 4, 2010, Pages 369-387

The use of artificial intelligence based techniques for intrusion detection: A review

Author keywords

Artificial intelligence; Ensemble system; Hybrid system; Intrusion; Intrusion detection system; Network security

Indexed keywords

ADAPTIVE SECURITY; AUDIT DATA; CLASSIFIER DESIGN; COMMERCIAL SERVICES; CURRENT STATUS; DATA SETS; ENSEMBLE SYSTEMS; EXPERIMENTAL ENVIRONMENT; FUTURE DIRECTIONS; HARDWARE AND SOFTWARE; INTERNET ATTACKS; INTRUSION; INTRUSION DETECTION SYSTEM; INTRUSION DETECTION SYSTEMS;

EID: 78650169163     PISSN: 02692821     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10462-010-9179-5     Document Type: Article
Times cited : (94)

References (96)
  • 3
    • 0004309520 scopus 로고    scopus 로고
    • Research in intrusion detection system-a survey
    • Axelsson S (1999) Research in intrusion detection system-a survey. CMU/SEI Technical Report
    • (1999) CMU/SEI Technical Report
    • Axelsson, S.1
  • 4
    • 0035879674 scopus 로고    scopus 로고
    • Intrusion detection through learning behavior model
    • DOI 10.1016/S0140-3664(00)00364-9, PII S0140366400003649
    • B Balajinath SV Raghavan 2001 Intrusion detection through learning behavior model Comput Commun 24 12 1202 1212 10.1016/S0140-3664(00)00364-9 (Pubitemid 32610612)
    • (2001) Computer Communications , vol.24 , Issue.12 , pp. 1202-1212
    • Balajinath, B.1    Raghavan, S.V.2
  • 8
    • 19944364877 scopus 로고    scopus 로고
    • Feature deduction and ensemble design of intrusion detection systems
    • DOI 10.1016/j.cose.2004.09.008, PII S016740480400238X
    • S Chebrolu A Abraham JP Thomas 2005 Feature deduction and ensemble design of intrusion detection systems Int J Comput Secur 24 4 295 307 10.1016/j.cose.2004.09.008 (Pubitemid 40752313)
    • (2005) Computers and Security , vol.24 , Issue.4 , pp. 295-307
    • Chebrolu, S.1    Abraham, A.2    Thomas, J.P.3
  • 10
    • 13544269338 scopus 로고    scopus 로고
    • Application of SVM and ANN for intrusion detection
    • DOI 10.1016/j.cor.2004.03.019, PII S0305054804000711, Application of Neural Networks
    • W-H Chen S-H Hsu H-P Shen 2005 Application of SVM and ANN for intrusion detection Comput Oper Res 32 2617 2634 1076.68547 10.1016/j.cor.2004.03.019 (Pubitemid 40219764)
    • (2005) Computers and Operations Research , vol.32 , Issue.10 , pp. 2617-2634
    • Chen, W.-H.1    Hsu, S.-H.2    Shen, H.-P.3
  • 12
    • 78650173360 scopus 로고    scopus 로고
    • CiscoSecure Accessed4August2010
    • CiscoSecure (2010) Cisco Secure IDS http://www.cisco.com/warp/public/cc/ pd/sqsw/sqidsz/index.shtml. Accessed 4 August 2010
    • (2010) Cisco Secure IDS
  • 17
    • 0034300835 scopus 로고    scopus 로고
    • Improving intrusion detection performance using keyword selection and neural networks
    • 10.1016/S1389-1286(00)00140-7
    • R Cunningham R Lippmann 2000 Improving intrusion detection performance using keyword selection and neural networks Comput Netw 34 4 597 603 10.1016/S1389-1286(00)00140-7
    • (2000) Comput Netw , vol.34 , Issue.4 , pp. 597-603
    • Cunningham, R.1    Lippmann, R.2
  • 23
    • 78650177676 scopus 로고    scopus 로고
    • Anomaly detection in computer networks using linear SVMs
    • Ljubljana, Slovenia
    • Fortuna C, Fortuna B, Mohorcic M (2007) Anomaly detection in computer networks using linear SVMs. SiKDD 2007, Ljubljana, Slovenia
    • (2007) SiKDD 2007
    • Fortuna, C.1    Fortuna, B.2    Mohorcic, M.3
  • 24
    • 57849130705 scopus 로고    scopus 로고
    • Anomaly-based network intrusion detection: Techniques, systems and challenges
    • 10.1016/j.cose.2008.08.003
    • P Garcia-Teodoro J Diaz-Verdejo G Macia-Fernandez E Vazquez 2009 Anomaly-based network intrusion detection: techniques, systems and challenges Comput Secur 28 18 28 10.1016/j.cose.2008.08.003
    • (2009) Comput Secur , vol.28 , pp. 18-28
    • Garcia-Teodoro, P.1    Diaz-Verdejo, J.2    MacIa-Fernandez, G.3    Vazquez, E.4
  • 27
    • 85084162735 scopus 로고    scopus 로고
    • A secure environment for untrusted helper applications: Confining the Wily Hacker
    • Goldberg L, Wagner D, Thomans R (1996) A secure environment for untrusted helper applications: confining the Wily Hacker. In: Sixth USENIX security symposium
    • (1996) Sixth USENIX Security Symposium
    • Goldberg, L.1    Wagner, D.2    Thomans, R.3
  • 30
    • 0343302298 scopus 로고
    • ASAX: Software architecture and rule based language for universal audit trail analysis
    • 648 of LNCS
    • Habra J, Charlier le B, Mounji A, Mathieu I (1992) ASAX: software architecture and rule based language for universal audit trail analysis. In: Computer security, proceedings of ESORICS 92, 648 of LNCS, pp 435-440
    • (1992) Computer Security, Proceedings of ESORICS , vol.92 , pp. 435-440
    • Habra, J.1    Charlier Le, B.2    Mounji, A.3    Mathieu, I.4
  • 32
    • 33744529638 scopus 로고    scopus 로고
    • Evolutionary neural networks for anomaly detection based on the behaviour of a program
    • Han S-J, Cho S-B (2006) Evolutionary neural networks for anomaly detection based on the behaviour of a program. IEEE Trans Syst Man Cybern
    • (2006) IEEE Trans Syst Man Cybern
    • Han, S.-J.1    Cho, S.-B.2
  • 37
    • 0027593257 scopus 로고
    • NADIR: An automated system for detecting network intrusions and misuse
    • 10.1016/0167-4048(93)90110-Q
    • J Hochberg K Jackson C Stallings J McClary D DuBois J Ford 1993 NADIR: an automated system for detecting network intrusions and misuse Comput Secur 12 3 248 253 10.1016/0167-4048(93)90110-Q
    • (1993) Comput Secur , vol.12 , Issue.3 , pp. 248-253
    • Hochberg, J.1    Jackson, K.2    Stallings, C.3    McClary, J.4    Dubois, D.5    Ford, J.6
  • 38
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • 0850.68278 10.1023/A:1022631118932
    • R Holte 1993 Very simple classification rules perform well on most commonly used datasets Mach Learn 11 63 91 0850.68278 10.1023/A:1022631118932
    • (1993) Mach Learn , vol.11 , pp. 63-91
    • Holte, R.1
  • 40
    • 33847144165 scopus 로고    scopus 로고
    • Artificial intelligence techniques applied to intrusion detection
    • Chennai, India
    • Idris NB, Shanmugam B (2005) Artificial intelligence techniques applied to intrusion detection. In: IEEE Indicon 2005 conference, Chennai, India, pp 52-55
    • (2005) IEEE Indicon 2005 Conference , pp. 52-55
    • Idris, N.B.1    Shanmugam, B.2
  • 41
    • 0029267472 scopus 로고
    • State transition analysis: A rule-based intrusion detection
    • 10.1109/32.372146
    • K Ilgun AK Richard AP Phillip 1995 State transition analysis: a rule-based intrusion detection IEEE Trans Softw Eng 21 3 181 199 10.1109/32.372146
    • (1995) IEEE Trans Softw Eng , vol.21 , Issue.3 , pp. 181-199
    • Ilgun, K.1    Richard, A.K.2    Phillip, A.P.3
  • 42
    • 78650179194 scopus 로고    scopus 로고
    • Internet Security Systems (ISS) Accessed4August2010
    • Internet Security Systems (ISS) (2010) Real Secure http://www.iss.net. Accessed 4 August 2010
    • (2010) Real Secure
  • 46
    • 36049030250 scopus 로고    scopus 로고
    • A new intrusion detection system using support vector machines and hierarchical clustering
    • Khan L, Awad M, Thuraisingham B (2007) A new intrusion detection system using support vector machines and hierarchical clustering. VLDB J 16
    • (2007) VLDB J , vol.16
    • Khan, L.1    Awad, M.2    Thuraisingham, B.3
  • 47
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Kibler DA (1991) Instance-based learning algorithms. Mach Learn 37-66
    • (1991) Mach Learn , pp. 37-66
    • Kibler, D.A.1
  • 50
    • 0348132918 scopus 로고    scopus 로고
    • Mining fuzzy association rules in databases
    • 10.1145/273244.273257
    • CM Kuok AW-C Fu MH Wong 1998 Mining fuzzy association rules in databases SIGMOD Rec 27 1 41 46 10.1145/273244.273257
    • (1998) SIGMOD Rec , vol.27 , Issue.1 , pp. 41-46
    • Kuok, C.M.1    Aw-C, F.2    Wong, M.H.3
  • 53
    • 1642354876 scopus 로고    scopus 로고
    • KDD-99 classifier learning contest LLSoft's results overview
    • 10.1145/846183.846201
    • I Levin 2000 KDD-99 classifier learning contest LLSoft's results overview SIGKDD Explor 1 2 67 75 10.1145/846183.846201
    • (2000) SIGKDD Explor , vol.1 , Issue.2 , pp. 67-75
    • Levin, I.1
  • 55
    • 0036321445 scopus 로고    scopus 로고
    • Use of k-nearest neighbor classifier for intrusion detection
    • DOI 10.1016/S0167-4048(02)00514-X
    • Y Liao VR Vemuri 2002 Use of K-nearest neighbor classifier for intrusion detection Comput Secur 21 439 448 10.1016/S0167-4048(02)00514-X (Pubitemid 34835644)
    • (2002) Computers and Security , vol.21 , Issue.5 , pp. 439-448
    • Liao, Y.1    Vemuri, V.R.2
  • 62
    • 58549090885 scopus 로고    scopus 로고
    • Improving malware detection by applying multi-inducer ensemble
    • 05687862 10.1016/j.csda.2008.10.015
    • E Menahem A Shabtai L Rokach Y Elovici 2009 Improving malware detection by applying multi-inducer ensemble Comput Stat Data Anal 53 4 1483 1494 05687862 10.1016/j.csda.2008.10.015
    • (2009) Comput Stat Data Anal , vol.53 , Issue.4 , pp. 1483-1494
    • Menahem, E.1    Shabtai, A.2    Rokach, L.3    Elovici, Y.4
  • 63
    • 33644961664 scopus 로고    scopus 로고
    • 1999 DARPA intrusion detection evaluation design and procedure
    • MIT Lincoln Laboratory (2001) 1999 DARPA intrusion detection evaluation design and procedure. DARPA technical report
    • (2001) DARPA Technical Report
  • 66
    • 10844230994 scopus 로고    scopus 로고
    • Intrusion detection using an ensemble of intelligent paradigms
    • DOI 10.1016/j.jnca.2004.01.003, PII S1084804504000049, Computational Intelligence on the Internet
    • S Mukkamala AH Sung A Abraham 2005 Intrusion detection using an ensemble of intelligent paradigms J Netw Comput Appl 28 167 182 10.1016/j.jnca.2004.01. 003 (Pubitemid 40003209)
    • (2005) Journal of Network and Computer Applications , vol.28 , Issue.2 , pp. 167-182
    • Mukkamala, S.1    Sung, A.H.2    Abraham, A.3
  • 67
    • 47849130842 scopus 로고    scopus 로고
    • Artificial intelligence approaches for intrusion detection. Systems, applications and technology conference, LISAT 2006
    • D Novikov RV Yampolskiy L Reznik 2006 Artificial intelligence approaches for intrusion detection. Systems, applications and technology conference, LISAT 2006 IEEE Long Island 5 5 1 8
    • (2006) IEEE Long Island , vol.5 , Issue.5 , pp. 1-8
    • Novikov, D.1    Yampolskiy, R.V.2    Reznik, L.3
  • 69
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: Existing solutions and latest technological trends
    • DOI 10.1016/j.comnet.2007.02.001, PII S138912860700062X
    • Patcha A, Park JM (2007) An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput Netw. doi: 10.1016/j.comnet.2007.02.001 (Pubitemid 46921030)
    • (2007) Computer Networks , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.-M.2
  • 70
    • 27744565978 scopus 로고
    • Rough sets
    • 0501.68053 10.1007/BF01001956 703291
    • Z Pawlak 1982 Rough sets Int J Comput Inf Sci 11 341 356 0501.68053 10.1007/BF01001956 703291
    • (1982) Int J Comput Inf Sci , vol.11 , pp. 341-356
    • Pawlak, Z.1
  • 71
    • 85084164413 scopus 로고    scopus 로고
    • Bro: A system for detecting network intruders in real-time
    • San Antonio, TX
    • Paxson V (1998) Bro: a system for detecting network intruders in real-time. In: Proceedings of the 7th USENIX security symposium. San Antonio, TX
    • (1998) Proceedings of the 7th USENIX Security Symposium
    • Paxson, V.1
  • 72
    • 33750514606 scopus 로고    scopus 로고
    • Modeling intrusion detection system using hybrid intelligent systems
    • DOI 10.1016/j.jnca.2005.06.003, PII S1084804505000445, Network and Information Security: A Computational Intelligence Approach
    • S Peddabachigari A Abraham C Grosan J Thomas 2007 Modeling intrusion detection system using hybrid intelligent systems J Netw Comput Appl 30 114 132 10.1016/j.jnca.2005.06.003 (Pubitemid 44666486)
    • (2007) Journal of Network and Computer Applications , vol.30 , Issue.1 , pp. 114-132
    • Peddabachigari, S.1    Abraham, A.2    Grosan, C.3    Thomas, J.4
  • 78
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • 10.1007/s10462-009-9124-7
    • Lior Rokach 2010 Ensemble-based classifiers Artif Intell Rev 33 1-2 1 39 10.1007/s10462-009-9124-7
    • (2010) Artif Intell Rev , vol.33 , Issue.12 , pp. 1-39
    • Lior, R.1
  • 84
    • 0034300682 scopus 로고    scopus 로고
    • Intrusion detection using autonomous agents
    • 10.1016/S1389-1286(00)00136-5
    • EH Spafford D Zamboni 2000 Intrusion detection using autonomous agents Comput Netw 34 4 547 570 10.1016/S1389-1286(00)00136-5
    • (2000) Comput Netw , vol.34 , Issue.4 , pp. 547-570
    • Spafford, E.H.1    Zamboni, D.2
  • 90
    • 69249230890 scopus 로고    scopus 로고
    • Intrusion detection by machine learning: A review
    • 10.1016/j.eswa.2009.05.029
    • C-F Tsai Y-F Hsu C-Y Lin W-Y Lin 2009 Intrusion detection by machine learning: a review Expert Syst Appl 36 10 11994 12000 10.1016/j.eswa.2009.05.029
    • (2009) Expert Syst Appl , vol.36 , Issue.10 , pp. 11994-12000
    • Tsai, C.-F.1    Hsu, Y.-F.2    Lin, C.-Y.3    Lin, W.-Y.4
  • 96
    • 77649293791 scopus 로고    scopus 로고
    • Ensemble classifiers for network intrusion detection system
    • A Zainal MA Maarof SM Shamsuddin 2009 Ensemble classifiers for network intrusion detection system J Inf Assur Secur 4 217 225
    • (2009) J Inf Assur Secur , vol.4 , pp. 217-225
    • Zainal, A.1    Maarof, M.A.2    Shamsuddin, S.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.