메뉴 건너뛰기




Volumn 33, Issue 1, 2017, Pages 87-94

BeReTa: A systematic method for identifying target transcriptional regulators to enhance microbial production of chemicals

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BIOLOGICAL MODEL; COMPUTER SIMULATION; ESCHERICHIA COLI; GENE EXPRESSION REGULATION; GENE REGULATORY NETWORK; GENETIC TRANSCRIPTION; GENETICS; METABOLISM; REPRODUCIBILITY; STREPTOMYCES COELICOLOR;

EID: 85014864418     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw557     Document Type: Article
Times cited : (9)

References (34)
  • 1
    • 53049097710 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol production
    • Atsumi,S. et al. (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng., 10, 305-311.
    • (2008) Metab. Eng. , vol.10 , pp. 305-311
    • Atsumi, S.1
  • 2
    • 84923868543 scopus 로고    scopus 로고
    • Advanced biotechnology: Metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products
    • Becker,J. and Wittmann,C. (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew. Chem. Int. Ed. Engl., 54, 3328-3350.
    • (2015) Angew. Chem. Int. Ed. Engl. , vol.54 , pp. 3328-3350
    • Becker, J.1    Wittmann, C.2
  • 3
    • 0037046560 scopus 로고    scopus 로고
    • Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)
    • Bentley,S.D. et al. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141-147.
    • (2002) Nature , vol.417 , pp. 141-147
    • Bentley, S.D.1
  • 4
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard,A.P. et al. (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng., 84, 647-657.
    • (2003) Biotechnol. Bioeng. , vol.84 , pp. 647-657
    • Burgard, A.P.1
  • 5
    • 78049255973 scopus 로고    scopus 로고
    • Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis
    • Chandrasekaran,S. and Price,N.D. (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 107, 17845-17850.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 17845-17850
    • Chandrasekaran, S.1    Price, N.D.2
  • 6
    • 77952265112 scopus 로고    scopus 로고
    • In silico identification of gene amplification targets for improvement of lycopene production
    • Choi,H.S. et al. (2010) In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microb., 76, 3097-3105.
    • (2010) Appl. Environ. Microb. , vol.76 , pp. 3097-3105
    • Choi, H.S.1
  • 7
    • 2342648924 scopus 로고    scopus 로고
    • Integrating high-throughput and computational data elucidates bacterial networks
    • Covert,M.W. et al. (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature, 429, 92-96.
    • (2004) Nature , vol.429 , pp. 92-96
    • Covert, M.W.1
  • 8
    • 84976874666 scopus 로고    scopus 로고
    • RegulonDB version 9.0: High-level integration of gene regulation, coexpression, motif clustering and beyond
    • Gama-Castro,S. et al. (2016) RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond. Nucleic Acids Res., 44, D133-D143.
    • (2016) Nucleic Acids Res. , vol.44 , pp. D133-D143
    • Gama-Castro, S.1
  • 9
    • 84925218937 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis
    • Ginesy,M. et al. (2015) Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis. Microb. Cell Fact., 14, 29.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 29
    • Ginesy, M.1
  • 10
    • 33745178476 scopus 로고    scopus 로고
    • Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae
    • Herrgard,M.J. et al. (2006) Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res., 16, 627-635.
    • (2006) Genome Res. , vol.16 , pp. 627-635
    • Herrgard, M.J.1
  • 11
    • 28244432190 scopus 로고    scopus 로고
    • Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor
    • Huang,J. et al. (2005) Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol. Microbiol., 58, 1276-1287.
    • (2005) Mol. Microbiol. , vol.58 , pp. 1276-1287
    • Huang, J.1
  • 12
    • 84931273722 scopus 로고    scopus 로고
    • Data-driven integration of genome-scale regulatory and metabolic network models
    • Imam,S. et al. (2015) Data-driven integration of genome-scale regulatory and metabolic network models. Front. Microbiol., 6, 409.
    • (2015) Front. Microbiol. , vol.6 , pp. 409
    • Imam, S.1
  • 13
    • 77951552860 scopus 로고    scopus 로고
    • OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains
    • Kim,J. and Reed,J.L. (2010) OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst. Biol., 4, 53.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 53
    • Kim, J.1    Reed, J.L.2
  • 14
    • 84906949001 scopus 로고    scopus 로고
    • Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in Streptomyces coelicolor A3(2)
    • Kim,M. et al. (2014) Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in Streptomyces coelicolor A3(2). Biotechnol. J., 9, 1185-1194.
    • (2014) Biotechnol. J. , vol.9 , pp. 1185-1194
    • Kim, M.1
  • 15
    • 84955660244 scopus 로고    scopus 로고
    • Transcriptomics-based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces coelicolor
    • Kim,M. et al. (2016) Transcriptomics-based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces coelicolor. Biotechnol. Bioeng., 113, 651-660.
    • (2016) Biotechnol. Bioeng. , vol.113 , pp. 651-660
    • Kim, M.1
  • 16
    • 84920896587 scopus 로고    scopus 로고
    • Next-generation genome-scale models for metabolic engineering
    • King,Z.A. et al. (2015) Next-generation genome-scale models for metabolic engineering. Curr. Opin. Biotechnol., 35C, 23-29.
    • (2015) Curr. Opin. Biotechnol. , vol.35 C , pp. 23-29
    • King, Z.A.1
  • 17
    • 84861440312 scopus 로고    scopus 로고
    • Systems metabolic engineering of microorganisms for natural and non-natural chemicals
    • Lee,J.W. et al. (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol., 8, 536-546.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 536-546
    • Lee, J.W.1
  • 18
    • 84943604629 scopus 로고    scopus 로고
    • Systems strategies for developing industrial microbial strains
    • Lee,S.Y. and Kim,H.U. (2015) Systems strategies for developing industrial microbial strains. Nat. Biotechnol., 33, 1061-1072.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 1061-1072
    • Lee, S.Y.1    Kim, H.U.2
  • 19
    • 77955141026 scopus 로고    scopus 로고
    • Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models
    • Lewis,N.E. et al. (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol., 6, 390.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 390
    • Lewis, N.E.1
  • 20
    • 0345824737 scopus 로고    scopus 로고
    • Network component analysis: Reconstruction of regulatory signals in biological systems
    • Liao,J.C. et al. (2003) Network component analysis: reconstruction of regulatory signals in biological systems. Proc. Natl. Acad. Sci. USA, 100, 15522-15527.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 15522-15527
    • Liao, J.C.1
  • 21
    • 84964043843 scopus 로고    scopus 로고
    • In silico constraint-based strain optimization methods: The quest for optimal cell factories
    • Maia,P. et al. (2016) In silico constraint-based strain optimization methods: the quest for optimal cell factories. Microbiol. Mol. Biol. Rev., 80, 45-67.
    • (2016) Microbiol. Mol. Biol. Rev. , vol.80 , pp. 45-67
    • Maia, P.1
  • 22
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • Marbach,D. et al. (2012) Wisdom of crowds for robust gene network inference. Nat. Methods, 9, 796-804.
    • (2012) Nat. Methods , vol.9 , pp. 796-804
    • Marbach, D.1
  • 23
    • 84891750356 scopus 로고    scopus 로고
    • COLOMBOS v2.0: An ever expanding collection of bacterial expression compendia
    • Meysman,P. et al. (2014) COLOMBOS v2.0: an ever expanding collection of bacterial expression compendia. Nucleic Acids Res., 42, D649-D653.
    • (2014) Nucleic Acids Res. , vol.42 , pp. D649-D653
    • Meysman, P.1
  • 24
    • 80054069179 scopus 로고    scopus 로고
    • A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011
    • Orth,J.D. et al. (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol. Syst. Biol., 7, 535.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 535
    • Orth, J.D.1
  • 25
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • Orth,J.D. et al. (2010) What is flux balance analysis? Nat. Biotechnol., 28, 245-248.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 245-248
    • Orth, J.D.1
  • 26
    • 84865075156 scopus 로고    scopus 로고
    • Flux variability scanning based on enforced objective flux for identifying gene amplification targets
    • Park,J.M. et al. (2012) Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Syst. Biol., 6, 106.
    • (2012) BMC Syst. Biol. , vol.6 , pp. 106
    • Park, J.M.1
  • 27
    • 0034049975 scopus 로고    scopus 로고
    • Genetic analysis of absR, a new abs locus of Streptomyces coelicolor
    • Park,U. et al. (2000) Genetic analysis of absR, a new abs locus of Streptomyces coelicolor. J. Microbiol. Biotechnol., 10, 169-175.
    • (2000) J. Microbiol. Biotechnol. , vol.10 , pp. 169-175
    • Park, U.1
  • 28
    • 8744224466 scopus 로고    scopus 로고
    • OptStrain: A computational framework for redesign of microbial production systems
    • Pharkya,P. et al. (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res., 14, 2367-2376.
    • (2004) Genome Res. , vol.14 , pp. 2367-2376
    • Pharkya, P.1
  • 29
    • 77954590959 scopus 로고    scopus 로고
    • OptForce: An optimization procedure for identifying all genetic manipulations leading to targeted overproductions
    • Ranganathan,S. et al. (2010) OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol., 6, e1000744.
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1000744
    • Ranganathan, S.1
  • 30
    • 79751525708 scopus 로고    scopus 로고
    • A computational tool for the simulation and optimization of microbial strains accounting integrated metabolic/regulatory information
    • Vilaca,P. et al. (2011) A computational tool for the simulation and optimization of microbial strains accounting integrated metabolic/regulatory information. Biosystems, 103, 435-441.
    • (2011) Biosystems , vol.103 , pp. 435-441
    • Vilaca, P.1
  • 31
    • 84974663176 scopus 로고    scopus 로고
    • Advances in the integration of transcriptional regulatory information into genome-scale metabolic models
    • Vivek-Ananth,R.P. and Samal,A. (2016) Advances in the integration of transcriptional regulatory information into genome-scale metabolic models. Biosystems, 147, 1-10.
    • (2016) Biosystems , vol.147 , pp. 1-10
    • Vivek-Ananth, R.P.1    Samal, A.2
  • 32
    • 84934927409 scopus 로고    scopus 로고
    • The LASER database: Formalizing design rules for metabolic engineering
    • Winkler,J.D. et al. (2015) The LASER database: Formalizing design rules for metabolic engineering. Metab. Eng. Commun., 2, 30-38.
    • (2015) Metab. Eng. Commun. , vol.2 , pp. 30-38
    • Winkler, J.D.1
  • 33
    • 79959374585 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
    • Yim,H. et al. (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol., 7, 445-452.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 445-452
    • Yim, H.1
  • 34
    • 84869039746 scopus 로고    scopus 로고
    • Enhancing fatty acid production by the expression of the regulatory transcription factor FadR
    • Zhang,F. et al. (2012) Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab. Eng., 14, 653-660.
    • (2012) Metab. Eng. , vol.14 , pp. 653-660
    • Zhang, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.